摘要
研究了一类带势的非线性Schr d inger方程iut=-△u-k(x)|u|4/Nu的初值问题,其中k(x)为C1上有界可微函数.利用经典的非线性Schr d inger方程已有的结果,得到了该方程的爆破解在爆破时刻的L2质量集中速率.
In this paper, the initial-value problem of the following Schrtidinger equation is investigated:iut=-△u-k(x)|u|^4/Nu,where k(x) is a bounded differentiable function on C^1 . By using the known results of classical nonlinear Schrodinger equations, the rate of the L^2 -mass concentration of the solution at the blow-up time is obtained.
出处
《四川师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2006年第4期397-400,共4页
Journal of Sichuan Normal University(Natural Science)
基金
国家自然科学基金(10271084)资助项目