摘要
在H ilbert空间中引入和研究了一类新的广义非线性集值变分包含组,利用极大η-单调映象的预解算子性质和Nad ler定理,对此类变分包含组建立了解的存在性定理和建议了一个寻求近似解的带误差的迭代算法,证明了由此算法生成的迭代序列的收敛性,给出的结果改进和推广了最近文献的相应结果.
A new system of generalized nonlinear set-valued variational inclusions is introduced and studied in Hilbert spaces. By using properties of the resolvent operator technique of maximal η -monotone mapping and Nadler' s result, an existence theorem of solutions for this system is established and a iterative algorithm with errors is suggested for finding approximation solutions. The convergence of the sequences generated by the iterative algorithm also studied. The results proved in this paper improve and generalize some recent results in this field.
出处
《四川师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2006年第4期434-437,共4页
Journal of Sichuan Normal University(Natural Science)
基金
国家自然科学基金(10471151)
重庆市教委科技基金资助项目
关键词
广义非线性集值变分包含组
极大Η-单调映象
预解算子
算法
收敛性
System of generalized nonlinear set-valued variational inclusion
Maximal η -monotone mapping
Resolvent operator
Algorithm
Convergence