期刊文献+

关于一类广义非线性集值变分包含组的逼近算法 被引量:2

An Approximation Algorithm for a System of Generalized Nonlinear Set-valued Variational Inclusions
下载PDF
导出
摘要 在H ilbert空间中引入和研究了一类新的广义非线性集值变分包含组,利用极大η-单调映象的预解算子性质和Nad ler定理,对此类变分包含组建立了解的存在性定理和建议了一个寻求近似解的带误差的迭代算法,证明了由此算法生成的迭代序列的收敛性,给出的结果改进和推广了最近文献的相应结果. A new system of generalized nonlinear set-valued variational inclusions is introduced and studied in Hilbert spaces. By using properties of the resolvent operator technique of maximal η -monotone mapping and Nadler' s result, an existence theorem of solutions for this system is established and a iterative algorithm with errors is suggested for finding approximation solutions. The convergence of the sequences generated by the iterative algorithm also studied. The results proved in this paper improve and generalize some recent results in this field.
作者 金茂明
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第4期434-437,共4页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(10471151) 重庆市教委科技基金资助项目
关键词 广义非线性集值变分包含组 极大Η-单调映象 预解算子 算法 收敛性 System of generalized nonlinear set-valued variational inclusion Maximal η -monotone mapping Resolvent operator Algorithm Convergence
  • 相关文献

参考文献8

二级参考文献15

  • 1Huang N,Comput Math Appl,2000年,40卷,2/3期,205页
  • 2Yuan G X Z,KKM Theory and Applications,1999年
  • 3Huang N J,Z Angew Math Mech,1999年,79卷,8期,569页
  • 4Huang N,J Comput Math Appl,1998年,35卷,10期,1页
  • 5Huang N J,J Math Anal Appl,1997年,216卷,197页
  • 6Adly S. Perturbed Algorithm and Sensitivity Analysis for a General Class of Variational Inclusions [J]. J Math Anal Appl, 1996, 201:609 - 630.
  • 7Agarwal B P, CHo Y J, Huang N J. Sensitivity Analysis for Strongly Nonlinear Quasi-Variational Inclusions [J]. Appl Math Lett,2000, 13: 19-24.
  • 8Xu H K. Inequalities in Banach Spaces with Applications [J]. Nonlinear Anal, 1991, 16(2): 1127 - 1138.
  • 9Verma R U. Projection methods,algorithms and a new system of nonliear variational inequalities[J]. J Compu Math Appl,2001,41(7-8):1025-1031.
  • 10Noor M A. Nonconvex functionsand variational inequalities[J]. J Optim Theory Appl,1995,87(3):615-630.

共引文献26

同被引文献19

  • 1何尚琴,侯象乾.反周期函数的(0,P(1/(2h)△_h))三角插值[J].四川师范大学学报(自然科学版),2006,29(5):573-576. 被引量:3
  • 2Móricz F.Strong Cesàro summability and statistical limit of Fourier intergrals[J].Analysis,2005,25(1):79-86.
  • 3Brown G,Feng D,Móricz F.Strong Cesàro summability of double Fourier integrals[J].Acta Math Hungar,2007,115(1/2):1-12.
  • 4Lenski L.Pointwise strong and very strong approximation of Fourier series[J].Acta Math Hungar,2007,115(3):215-233.
  • 5Akhobade T.On the convergence of generalized Cesàro means of trigonometric Fourier series Ⅰ & Ⅱ [J].Acta Math Hungar,2007,115(1/2):59-78.
  • 6Dzyubenko G A,Gilewicz J.Copositive approximation of periodic functions[J].Acta Math Hungar,2008,120(4):301-314.
  • 7Tikhonov S.Trigonometric series of Nikol's Skii classes[J].Acta Math Hungar,2007,114(1/2):61-78.
  • 8Tikhonov S.Addendum to "Trigonometric series of Nikol's Skii classes"[J].Acta Math Hungar,2008,120(1/2):9-20.
  • 9Fiilop V.Double sine series with nonnegative coefficients and Lipschitz classes[J].Colloq Math,2006,105(25):25-34.
  • 10Móricz F.Absolutely convergence Fourier series and function classes[J].J Math Anal Appl,2006,324:1168-1177.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部