摘要
该文讨论了偶数阶边值问题(-1)~m y^(2m)=f(t,y),0≤t≤1,α_(i+1y)^(2i)(0)-β_(i+1y)^(2i+1)(0)=0,γ_(i+1y)^(2i)(1)+δ_(i+1y)^(2i+1)(1)=0,0≤i≤m-1正解的存在性.借助于Leggett-Williams不动点定理,建立了该问题存在三个及任意奇数个正解的充分条件.
In this paper the authors discuss the existence of positive solution to the following even order boundary value problem (-1)^my^(2m)=f(t,y),0≤t≤1,αi+1y^(2i)(0)-βi+1y^(2i+1)(0)=0,γi+1y^(2i)(1)+δi+1y^(2i+1)(1)=0,0≤i≤m-1.Sufficient conditions are obtained for existence of three or arbitrary odd positive solutions of the above problem by using Leggett-Williams fixed point theorem.
出处
《数学物理学报(A辑)》
CSCD
北大核心
2006年第5期700-706,共7页
Acta Mathematica Scientia
基金
国家自然科学基金(10571078)
兰州大学理论物理与数学纯基础科学基金(Lzu05-03)
教育部高等学校教学科研奖励计划资助
关键词
正解
锥
不动点
边值问题
Positive solution
Cone
Fixed point
Boundary value problem