期刊文献+

强阻尼波方程解的整体存在性和一致衰减性 被引量:2

Global Existence and Uniform Decay Rates of Solutions for a Class of Strongly Damped Wave Equations
下载PDF
导出
摘要 这篇文章研究一类带非线性源项和非线性边界阻尼项的强阻尼波方程强解和弱解的整体存在性和唯一性,进而也讨论解的一致衰减. In this paper the authors study the existence and uniqueness of global strong solutions and global weak solutions for a class of strongly damped wave equations with nonlinear source term and nonlinear boundary damping term. The authors also discuss the uniform decay of solutions.
作者 方道元 徐江
机构地区 浙江大学数学系
出处 《数学物理学报(A辑)》 CSCD 北大核心 2006年第5期753-765,共13页 Acta Mathematica Scientia
基金 国家自然科学基金(10271108 10571158)资助
关键词 强阻尼 Faedo-Galerkin 一致衰减 势井 Strongly damped Faedo-Galerkin Uniform decay Potential well
  • 相关文献

参考文献10

  • 1Lions J L. Quelques Methodes de Resolution des Problemes aux Limites non Lineaires. Paris: Dunod-Gauthier Villars, 1969
  • 2Webb G F. Existence and asymptotic behavior for a strongly damped nonlinear wave equation. Canad J Math, 1980, 32:631-643
  • 3Vitillaro E. A potential well theory for the wave equation with nonlinear source and boundary damping terms. Glasgow Math J, 2002, 44:375-395
  • 4刘亚成,王锋,刘大成.任意维数的强阻尼非线性波动方程(Ⅰ)——初边值问题[J].应用数学,1995,8(3):262-266. 被引量:14
  • 5Ono K. Global existence, decay and blow up of solutions for some mildly degenerate nonlinear Kirchnoff strings. J Differential Equations, 1997, 137:273-301
  • 6Ma T F, Soriano J A. On weak solutions for an evolution equation with exponential nonlinearities. Nonlinear Anal T M A, 1999, 37:1029-1038
  • 7Yang Zhijian. Existence and asymptotic behaviour of solutions for a class of quasilinear evolution equations with nonlinear damping and source terms. Math Meth Appl Sci, 2002, 25:795-814
  • 8Yang Zhijian, Chen Guowang. Global existence of solutions for quasi-linear wave equations with viscous damping. J Math Anal Appl, 2003, 285:604-618
  • 9Komornik V, Zuazua E. A direct method for boundary stabilization of the wave equation. J Math Pures Appl, 1990, 69:33-54
  • 10徐江.一类强阻尼波方程解的存在性和爆破性[J].高校应用数学学报(A辑),2006,21(2):157-164. 被引量:2

二级参考文献7

  • 1Georgiev V,Todorova G.Existence of a solution of the wave equation with nonlinear damping and source terms[J].J Differential Equations,1994,109:295-308.
  • 2Ono K.Global existence,decay,and blow up of solutions for some mildly degenerate nonlinear[J].J Differential Equations,1998,150:203-214.
  • 3Vitillaro E.A potential well theory foy the wave equation with nonlinear source and boundary damping terms[J].Glasgow Math J,2002,44:375-395.
  • 4Barbu V.Nonlinear Semigroups and Differential Equations in Banach Space[M].Amsterdam:Nordhoff,1976.
  • 5Levine H.Instability and nonexistence of global solutions to nonlinear wave equations of the from Putt =-Au + F(u)[J].Trans Amer Math Soc,1974,192:1-21.
  • 6刘亚成,刘大成.-Δu=f(u)的初边值问题[J]华中理工大学学报,1988(06).
  • 7Jerome Sather. The existence of a global classical solution of the initial-boundary value problem for ?u+u3=f[J] 1966,Archive for Rational Mechanics and Analysis(4):292~307

共引文献14

同被引文献18

  • 1刘亚成,刘萍.关于位势井及其对强阻尼非线性波动方程的应用[J].应用数学学报,2004,27(4):710-722. 被引量:18
  • 2徐江.一类强阻尼波方程解的存在性和爆破性[J].高校应用数学学报(A辑),2006,21(2):157-164. 被引量:2
  • 3刘亚成,万维明,吕淑娟.神经传播型方程初值问题解的Blow-up[J].应用数学学报,1997,20(2):289-293. 被引量:5
  • 4[1]Kirchhoff,G.Vorlesungen uber mechamic[J].Tauber LEIPZIG,1883,2(2):1-10.
  • 5[2]Nagumo,J,Arimoto,S.,Yoshizawa,S..An Active Pulse Transmission Line Simulating Nerveaxon[J].Proc.IBE,1962,50:2061-2070.
  • 6[3]Monica Conti.Vittorino Pata.Marco Squassina.Strongly Damped Wave Equations on with Critical Nonlinearities[J].Preprint,2003.
  • 7[8]FILIPPO.GAZZOLA,MARCO SQUASSINA.Global Solutions and Finite Time Blow up for Damped Semilinear Wave Equations[J].ANN.I.H.Pointcare.AN.,2006,23(2):185-207.
  • 8[11]Vittorino Pata,Marco Squassina.On the Strongly Damped Wave Equations[J].Commu.Math.Phys.,2005,253(2):511-533.
  • 9[12]R,Teman,Infinite Dimensional Dynamics Systems in Mechanics and physics,Applied Mathematical Science Vol.68,springer-verlag,NewYork,1998.
  • 10刘亚成 刘大成.三维广义神经传播型非线性拟双曲方程(组)的整体强解[J].数学学报,1987,30:536-547.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部