关于离散Schrdinger谱问题及其方程族的一个注记
A Note on a Discrete Schrdinger Spectral Problem and Associated Evolution Equations
摘要
对一个离散Schr■dinger谱问题,给出与其相联系方程族的双Hamilton结构.同时构造了该族的一个Darboux变换.
For a discrete Schrodinger spectral problem, the authors associate a bi-Hamiltonian structure for the related hierarchy. A simple Darboux transformation is also presented.
出处
《数学物理学报(A辑)》
CSCD
北大核心
2006年第5期773-777,共5页
Acta Mathematica Scientia
基金
教育部跨世纪优秀人才培养计划基金
国家自然科学基金(10231050)资助
参考文献10
-
1Blaszak M, Marciniak K. R-matrix approach to lattice integrable systems. J Math Phys, 1994, 35:46-41
-
2Boiti M, Bruschi M, Pempinelli F, Prinari B. A discrete Schrodinger spectral problem ana associated eaevolution equations. J Phys A: Maths and Gen, 2003, 36:139
-
3Boiti M, Pempinelli F, Prinari B, Spire A. An integrable discretization of KdV at large times. Inverse Problems, 2001, 17:515
-
4Faybusovich L, Gekhtman M. On the Schur flows. J Phys A: Math Gen, 1999, 32:46-71
-
5Kupershmidt B A. Discrete Lax equations and differential-difference calculus. Asterisque 1985, 123
-
6Matveev V B, Salle M A. Darboux transformations and solitons. Berlin: Springer-Verlag, 1991
-
7Oevel W. Poisson Brackets for Integrable Lattice Systems, Algebraic Aspects of Integrable Systems. In: Memory of Irene Dorfman, eds. A S Fokas and I M Gelfand. Boston: Birkhauser, 1996. 61
-
8Olver P J. Applications of Lie Groups to Differential Equations. New York: Springer-Verlag, 1993
-
9Shabat A. Dressing chain and lattices, in Proceedings of the workshop on Nonlinearity, Integrability, and all that. Twentity Years after NEEDS'79 ,eds. M Boiti, et al. Singapore: World Scientific, 331, 2000
-
10Tsuchida T, Wadati M. Bi-Hamiltonian structure of the modified Volterra model. Chaos, Solitons and Fractals, 1998, 9:869
-
1陶司兴,夏铁成.Li方程族的守恒律和对称[J].河南大学学报(自然科学版),2013,43(2):125-129.
-
2乔永芬.变质量高阶非线性非完整系统的广义Volterra方程[J].力学学报,1989,21(5):631-640. 被引量:4
-
3胡适耕.一类时滞微分方程解的渐近性质[J].华中理工大学学报,1991,19(3):101-106.
-
4贾保国.Volterra方程的稳定性[J].河北师范大学学报(自然科学版),1991,15(4):15-18.
-
5王克.一类泛函微分方程的稳定性定理及其应用[J].系统科学与数学,1992,12(3):273-276. 被引量:1
-
6陈之明,刘影.关于(C,α)-预解族[J].阜阳师范学院学报(自然科学版),2010,27(1):8-10.
-
7韩中秋,王文龙.Volterra方程的稳定性[J].天津教育学院学报(自然科学版),1997(1):31-34.
-
8李文建,俞元洪.Volterra方程的稳定性条件[J].新疆大学学报(自然科学版),1991,8(3):14-17. 被引量:2
-
9斯仁道尔吉.Li方程族的Hamilton结构[J].内蒙古师范大学学报(自然科学汉文版),1994,23(2):8-12. 被引量:1
-
10王克.Volterra积分微分方程Cauchy问题解的存在性与唯一性[J].东北师大学报(自然科学版),1990,22(3):1-5.