期刊文献+

关于离散Schrdinger谱问题及其方程族的一个注记

A Note on a Discrete Schrdinger Spectral Problem and Associated Evolution Equations
下载PDF
导出
摘要 对一个离散Schr■dinger谱问题,给出与其相联系方程族的双Hamilton结构.同时构造了该族的一个Darboux变换. For a discrete Schrodinger spectral problem, the authors associate a bi-Hamiltonian structure for the related hierarchy. A simple Darboux transformation is also presented.
出处 《数学物理学报(A辑)》 CSCD 北大核心 2006年第5期773-777,共5页 Acta Mathematica Scientia
基金 教育部跨世纪优秀人才培养计划基金 国家自然科学基金(10231050)资助
关键词 孤立子 离散可积系统 DARBOUX变换 HAMILTON结构 VOLTERRA方程 Darboux transformation Hamiltonian struture Discrete integrable system Soilton Volterra equation
  • 相关文献

参考文献10

  • 1Blaszak M, Marciniak K. R-matrix approach to lattice integrable systems. J Math Phys, 1994, 35:46-41
  • 2Boiti M, Bruschi M, Pempinelli F, Prinari B. A discrete Schrodinger spectral problem ana associated eaevolution equations. J Phys A: Maths and Gen, 2003, 36:139
  • 3Boiti M, Pempinelli F, Prinari B, Spire A. An integrable discretization of KdV at large times. Inverse Problems, 2001, 17:515
  • 4Faybusovich L, Gekhtman M. On the Schur flows. J Phys A: Math Gen, 1999, 32:46-71
  • 5Kupershmidt B A. Discrete Lax equations and differential-difference calculus. Asterisque 1985, 123
  • 6Matveev V B, Salle M A. Darboux transformations and solitons. Berlin: Springer-Verlag, 1991
  • 7Oevel W. Poisson Brackets for Integrable Lattice Systems, Algebraic Aspects of Integrable Systems. In: Memory of Irene Dorfman, eds. A S Fokas and I M Gelfand. Boston: Birkhauser, 1996. 61
  • 8Olver P J. Applications of Lie Groups to Differential Equations. New York: Springer-Verlag, 1993
  • 9Shabat A. Dressing chain and lattices, in Proceedings of the workshop on Nonlinearity, Integrability, and all that. Twentity Years after NEEDS'79 ,eds. M Boiti, et al. Singapore: World Scientific, 331, 2000
  • 10Tsuchida T, Wadati M. Bi-Hamiltonian structure of the modified Volterra model. Chaos, Solitons and Fractals, 1998, 9:869

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部