期刊文献+

基于核规范变量分析的非线性故障诊断方法 被引量:5

Nonlinear Process Fault Diagnosis Based on Kernel Canonical Variate Analysis
下载PDF
导出
摘要 提出一种基于核规范变量分析(KCVA)的非线性过程故障诊断方法.该方法使用核函数完成非线性空间到高维线性空间的映射,避免了高维空间中的数据处理和非线性映射函数的使用.在线性空间中使用规范变量分析(CVA)来辨识状态空间模型,从数据中提取状态信息.3个监测量(Tr2,T2s,Q)用来进行故障检测,同时使用贡献图分离故障变量,并判断故障原因.在CSTR系统上的仿真结果表明,KCVA方法比主元分析法(PCA)和CVA方法能更灵敏地检测到故障的发生,更有效地监控过程变化. A new method based on kernel canonical variate analysis(KCVA) is proposed for nonlinear process fault diagnosis. This method uses the kernel function to map the nonlinear space into a linear high dimension space. The application of the kernel function can avoid nonlinear mapping function and data processing in high dimension spaces. Canonical variate analysis(CVA) is applied to identify a state space model in linear space and state information is extracted. Three monitoring statistics Tr^2, Ts^2 and Q are built for fault detection. Contribution plot is used to isolate faulty variables and locate fault source. The simulation results on CSTR system indicate that KCVA can detect fault more easily than principal component analysis and canonical variate analysis.
出处 《控制与决策》 EI CSCD 北大核心 2006年第10期1109-1113,共5页 Control and Decision
基金 国家863计划项目(2004AA412050)
关键词 核规范变量分析 故障诊断 贡献图 非线性过程 Kernel canonical variate analysis Fault diagnosis Contribution plot Nonlinear process
  • 相关文献

参考文献11

  • 1Chiang L H,Russell E L,Braatz R D.Fault Detection and Diagnosis in Industrial Systems[M].London:Springer-Verlag,2001:35-98.
  • 2Dong D,MacAvoy T J.Nonlinear Principal Component Analysis Based on Principal Curve and Neural Networks[J].Computers and Chemical Engineering,1996,20(1):65-78.
  • 3Thissen U,Melssen W J,Buydens L M C.Nonlinear Process Monitoring Using Bottle-neck Neural Networks[J].Analytica Chimica Acta,2001,446(1-2):371-383.
  • 4Jia F,Martin E B,Morris A J.Non-linear Principal Component Analysis for Process Fault Detection[J].Computers and Chemical Engineering,1998,22(S):S851-S854.
  • 5张尧庭.多元统计分析引论[M].北京:科学出版社,2003.
  • 6Russell E L,Chiang L H,Brattz R D.Fault Detection in Industrial Processes Using Canonical Variate Analysis and Dynamic Principal Component Analysis[J].Chemometrics and Intelligent Laboratory Systems,2000,51(1):81-93.
  • 7Lai P L,Fyfe C.Kernel and Nonlinear Canonical Correlation Analysis[J].Int J of Neural Systems,2000,10(5):365-377.
  • 8Melzer T,Reiter M,Bischof H.Appearance Models Based on Kernel Canonical Correlation Analysis[J].Patter Recognition,2003,36(9):1961-1971.
  • 9Lee J M,Yoo C K,Lee I B.Fault Detection of Batch Processes Using Multiway Kernel Principal Component Analysis[J].Computers and Chemical Engineering,2004,28(9):1837-1847.
  • 10Simoglou A,Martin E B,Morris A J.Statistical Performance Monitoring of Dynamic Multivariate Processes Using State Space Modeling[J].Computers and Chemical Engineering,2002,26(6):909-920.

共引文献56

同被引文献62

  • 1杜世昌,奚立峰,潘尔顺.面向质量控制的制造系统可诊断性分析[J].机械工程学报,2006,42(5):149-154. 被引量:7
  • 2吴以凡,艾丽君,欧阳树生,吴铁军.面向钢铁生产过程质量控制的动态数据挖掘方法[J].冶金自动化,2006,30(4):6-10. 被引量:6
  • 3Comon P. Independent Component Analysis: a New Concept? Signal Processing, 1994,36:287.
  • 4Ypma A, Leshem A, Duin R P W. Blind Separation of Rotating Machine Sources: Bilinear-Forms and Convolutive Mixtures. Neurocomputing Special Issue on ICA/BSS, 2002.
  • 5Hyvaxinen A. Fast and Robust Fixed-Point Algorithm for Independent Component Analysis. IEEE Trans on Neural Network, 1999, 10(3) : 626 -634.
  • 6Vapnik V. The Nature of Statistical Learning Theory. New York: Springer, 1999.
  • 7Achmad Widodo, Bo-Suk Yang. Application of Nonlinear Feature Extraction and Support Vector Machines for Fault Diagnosis of Induction Motors. Expert Systems with Applications, 2007, (33) :245 - 250.
  • 8Francis R B, Michael I J. Kernel Independent Component Analysis. Journal of Machine Learning Research, 2002, 2 (3) : 1 - 48.
  • 9Montgomery D C. Introduction to statistical quality control. New York: John wiley &Sons, 1988.
  • 10Yu JB, Xi LF. A neural network ensemble-based model for on-line monitoring and diagnosis of out-of-control signals in multivariate manufacturing processes. Expert systems with applications, 2009, 36(1 ): 909-921.

引证文献5

二级引证文献107

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部