期刊文献+

细分曲面的形状调节与控制 被引量:1

Shape Adjustment and Control of Subdivision Surfaces
下载PDF
导出
摘要 对Doo-Sab in细分算法进行了延拓,通过引入一个形状参数λ(0≤λ≤1),使生成的细分曲线、曲面在给定拓扑网格的情况下可以调节和控制。本文提出的算法简单、易于操作,可方便地解决工程实际中曲面位置调整和形状控制问题。 The paper extended the Doo-Sabin subdivision algori hm and introduced a parameter which can adjust and control the subdivision curves and subdivision surfaces generated in the case of a given topological network. The extended algorithm is simple, convenient and can solve the problems of position adjustment and shape control of curves and surfaces that exist in engineering.
出处 《机械科学与技术》 CSCD 北大核心 2006年第10期1163-1165,共3页 Mechanical Science and Technology for Aerospace Engineering
基金 西北工业大学研究生创业种子基金项目(z200571) 陕西省自然科学基金项目(2004A03)资助
关键词 Doo-Sabin细分算法 细分曲线 细分曲面 Doo-Sabin subdivision algorithm subdivision curye subdivision surface
  • 相关文献

参考文献8

  • 1Chaikin G M.An algorithm for high speed curve generation[J].Compu.Graph.Image Process,1974,3(12):346~349
  • 2Catmull E,Clark J.Recursively generated B-spline surfaces on arbitrary topological meshes[J].Computer Aided Design,1978,10(6):350~355
  • 3Doo D,Sabin M.Behaviour of recursive division surfaces near extraordinary points[J].Computer Aided Design,1978,10(6)
  • 4Piegl L,Tiller W.Curve and surface construction using rational B-splines[J].Computer Aided Design,1987,19(9)
  • 5Piegl L.Modifying the shape of rational B-spline,part 1:surfaces[J].Computer Aided Design,1989,21(9):538~546
  • 6Nasri A.Curve interpolation in recursively generated B-spline surfaces over abitrary topology[J].Computer Aided Geometric Design,1997,14:13~30
  • 7Nasri A H.Recursive subdivision of polygonal complexes and its application in computer aided geometric design[J].Computer aided Geometric Design,2000,17:595~619
  • 8Sederberg T,et al.Non-uniform recursive subdivision surfaces[A].In:Computer Graphics Proceedings[C],ACM SIGGRAPH,1998:387~394

同被引文献14

  • 1曾庭俊,罗国明,张纪文.Catmull-Clark细分曲面的形状调整[J].计算机辅助设计与图形学学报,2004,16(5):707-711. 被引量:7
  • 2徐岗,汪国昭.Doo-Sabin细分算法在动态模式下的推广[J].计算机辅助设计与图形学学报,2006,18(3):341-346. 被引量:2
  • 3DOO D,SABIN M.Behaviour of recursive division surfaces near extraordinary points[J].Computer Aided Design,1978,10(6):356-360.
  • 4NASRI A.Polyhedral subdivision methods for free-form surfaces[J].ACM Transactions on Graphics,1987,6(1):29-73.
  • 5ZHENG J M,CAI Y Y.Making Doo-Sabin surface interpolation always work over irregular meshes[J].The Visual Computer,2005,21(4):242-251.
  • 6任秉银,李小东.一种细分曲面形状控制方法[C]// 第二届全国几何设计与计算学术会议论文集.合肥:中国科技大学出版社,2005:135-138.
  • 7ZHENG J M,CAI Y Y.Interpolation over Arbitrary Topology Meshes Using a Two-Phase Subdivision Scheme[J].IEEE Transactions on Visualization and Computer Graphics,2006,12(3):301-310.
  • 8BRUNET P.Including shape handles in recursive subdivision Surfaces[J].Computer Aided Geometric Design,1988,5(1):41-50.
  • 9PETERS J.Constructing C1 Surfaces of Arbitrary Topology Using Biquadratic Bicubic Spline[C]// Designing Fair Curves and Surfaces.Philadelphia:SIAM,1994:277-293.
  • 10FOLEY J,DAM,A,FEINERS,et al.Computer graphics:principles and practice[M].2nd dun.Addison-Wddison,Boston 1997.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部