摘要
The purpose of increasing the aerodynamic efficiency and enhancing the supermaneuverability for the selected supersonic aircraft is presented. Aerodynamic characteristics, the surface pressure distribution and the maximum lift are estimated for the baseline configuration for different Mach numbers and attack angles in subson- ic and supersonic potential flows, using a low-order three-dimensional panel method supported with the semi-empirical formulas of the data compendium (DATCOM). Total nose-up and nose-down pitching moments about the center of gravity of the complete aircraft in the subsonic region depending on flight conditions and aircraft performance limitations are estimated. A software package is developed to implement the two-dimensional thrust vectoring flight control technique (pitch vectoring up and down) controlled by the advanced aerodynamic and control surface (the foreplane or the canard). Results show that the canard with the thrust vectoring produces enough nose-down moment and can support the stabilizer at high maneuvers. The suggested surface can increase the aerodynamic efficiency (lift-to-drag ratio) of the baseline configuration by 5%-6% in subsonic and supersonic flight regimes.
为了提高某超声速飞机的空气动力学效率和机动性能,本文采用低阶的三维板块法和DATCOM半经验公式,在亚声速和超声速条件下,对不同马赫数和迎角情况计算了基本气动外形的飞机空气动力学特性、表面压力分布以及最大升力。此外还开发了一套软件以实现由引进的先进气动操纵面(如鸭翼等)控制的二维推力矢量技术。试验结果表明气动操纵面结合推力矢量技术能够产生足够的低头力矩,且有能力满足高度机动飞行时的稳定性要求。此外,不论是亚声速还是超声速飞行,气动操纵面均可以提高气动效率5%—6%。