期刊文献+

基于Parzen窗的投影聚类方法 被引量:2

Projective Clustering Based on Parzen Window Technique
下载PDF
导出
摘要 研究表明,高维数据的聚类都隐含在低维的子空间内,而这些子空间就是把原始数据投影到某些维度上的交集,于是相应的聚类算法就变成如何寻找合适的子空间内容。在此提出了一种新的划分子空间方法——基于Parzen窗子空间划分方法,并在这基础上提出了新的投影聚类方法PCPW。通过与最新的EPCH算法的实验结果对比表明,两者聚类效果相当,但PCPW算法更简单,易于实现。 Many researchers indicate that the clusters of a high dimensional dataset are often hidden in all the subspaces of the corresponding low dimensional datasets ,thus the corresponding clustering algorithm is to find appropriate subspaces. In this paper,a new Parzen-Window-based subspace dividing method is given,and accordingly,the new projective clustering algorithm PCPW is proposed. Compared with the latest EPCH algorithm,it has a comparable clustering performance,however,it can be more easily realized.
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2006年第4期70-73,共4页 Journal of Guangxi Normal University:Natural Science Edition
基金 江苏省自然科学基金资助项目(BK20003017)
关键词 子空间划分 直方图 PARZEN窗 投影聚类 subspace partition histograms Parzen window projective clustering
  • 相关文献

参考文献4

  • 1NG E K K,FU A,WONG R C W.Projective clustering by histograms[J].IEEE Trans Knowledge and Data Engineering,2005,17(3):369-383.
  • 2AGRAWAL R,GEHRKE J,GUNOPOLOS D,et al.Automatic subspace clustering of high dimensional data for data mining applications[C]//TIWARY A,FRANKLIN M.Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data.New York:ACM Press,1998:94-105.
  • 3AGGRAWAL C C,YU P S.Finding generalized projected clusters in high dimensional spaces[C]//CHEN W,NAUGHTON J F,BERNSTEIN P A.Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data.New York:ACM Press,2000:70-81.
  • 4SCOTT D W.Multivariate density estimation:Theory,practice,and visualization[M].New York:John Wiley & Sons Inc,1992:337-345.

同被引文献16

  • 1冯永,吴开贵,熊忠阳,吴中福.一种有效的并行高维聚类算法[J].计算机科学,2005,32(3):216-218. 被引量:6
  • 2吴红艳,王蔚韬,文俊浩,何光辉.具有输入知识的高维数据聚类算法研究[J].计算机科学,2006,33(1):240-242. 被引量:1
  • 3陈慧萍,王煜,王建东.高维数据挖掘算法的研究与进展[J].计算机工程与应用,2006,42(24):170-173. 被引量:8
  • 4AGGARWAL C C,WOLF J L,YU P S,et al. Fast algorithms for projected clustering[C]//Proc of the 1999 ACM SIGMOD International Conference on Management of data. New York : ACM Press, 1999 : 61-72.
  • 5AGGARWAL C C,YU P S. Finding generalized projected clusters in high dimensional spaces[J]. ACM SIGMOD Record,2000,29(2) :70-81.
  • 6PROCOPIUC C M,JONES M,AGARWAL P K,et al. A montecarlo algorithm for fast projective clustering [C]// Proc of the 2002 ACM SIGMOD International Conferenee on Management of Data. New York:ACM Press, 2002: 418-427.
  • 7NG E,FU A,WONG R. Projective clustering by histograms[J]. IEEE Trans Knowl Data Eng,2005,17(3):369-383.
  • 8YIP K Y,NG M K,CHEUNG D W. HARP:A practical projected clustering algorithm[J]. IEEE Trans Knowl Data Eng, 2004,16(11) : 1387-1397.
  • 9LI Jiu-yong,HUANG Xiao-di,SELKE C,et al. A fast algorithm for finding correlation clusters in noise data[C]// Proc of the 5th Pacific-Asia Knowledge Discovery and Data Mining Conference. Heidelberg:Springer,2007:639-647.
  • 10Shen Hong, Yan Xiao-Long.Probability density estimation over evolving data streams using tilted Parzen window[C]//IEEE Symposium on Computers and Communications , 2008 : 585-589.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部