期刊文献+

图P_(2r,2m)的优美标号 被引量:23

THE GRACEFUL LABELINGS OF P_(2r,2m)
原文传递
导出
摘要 设u,v是两个固定顶点,用b条内部互不相交且长度皆为a的道路连接u,v所得图用P_(a,b)表示.K.M.Kathiresan证明:P_(2r,2m-1)(r,m皆为任意正整数)是优美的,且猜想,除了(a,b)=(2r+1,4s+2)外,所有的P_(a,b)都是优美的.杨元生已证明P_(2r+1,2m-1)是优美的,并且证明了,当r=1,2,3,4,5,6,7时,P_(2r,2m)也是优美的.作者证明:r为任意奇数时,P_(2r,2m)也是优美的. Let u and v be two fixed vertices. Connect u and v by b internally disjoint paths of length a and denote the resulting graphs by Pa,b. K. M. Kathiresan shows that P2r,2m-1 is graceful and conjectures that Pa,b is graceful except when (a, b) = (2r + 1, 4s + 2). Y. S. Yang shows that P2r+1,2m-i and P2r,2m(r = 1, 2,..., 7) are graceful. In this paper, P2r,2m is proved to be graceful when r is an odd number.
作者 严谦泰
出处 《系统科学与数学》 CSCD 北大核心 2006年第5期513-517,共5页 Journal of Systems Science and Mathematical Sciences
基金 河南省自然科学基金(0511013800)资助.
关键词 优美图 顶点标号 边标号 Graceful graph, vertex labeling, edge labeling.
  • 相关文献

参考文献7

  • 1Gallian J A. A dynamic survery of graph labeling. The Electronic Journal of Conbinatorics, 2000,6.
  • 2Ma Kejie. Graceful Graphs. Beijing, Peking University Press, 1991, 10.
  • 3Ringel G. Problem 25 in theory of graphs and its application. Proc. Symposium Smolenice, 1963,162.
  • 4Rose A. On Certain Valuations of the Vertices of a Graph. Theory of Graphs, Proc. Internet,Syspos, Rome, 1966, 349-355.
  • 5Golomb S W. How to Number a Graph. Graph Theory and Computing, Academic Press, New York, 1972, 23-37.
  • 6Kathiresan K M. Two classes of graceful graphs. Ars Combinatorial. 2000, 55: 129-132.
  • 7杨元生,容青,徐喜荣.一类优美图[J].Journal of Mathematical Research and Exposition,2004,24(3):520-524. 被引量:14

二级参考文献5

  • 1RINGEL G. Problem 25 in theory of graphs and its application [J]. Proc. Symposium Smolenice,1963, 162.
  • 2ROSA A. On certain Valuations of the Vertices of a Graph [M]. Theory of Graphs, Proc. Internat,Sympos, Rome. , 1966, 349-355.
  • 3GOLOMB S W. How to Number a Graph [M]. Graph Theory and Computing, Academic Press, New York, 1972, 23-37.
  • 4GALLIAN J A. A dynamic survery of graph labeling [J]. The electronic journal of combinatorics,2000, 6.
  • 5KATHIESAN K M. Two classes of graceful graphs [J]. Ars Combinatoria, 2000, 55.. 129-132.

共引文献13

同被引文献118

引证文献23

二级引证文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部