摘要
整数距离图G(D)以全体整数作为顶点集,顶点u,v相邻当且仅当|u-v|∈D,其中D是一个正整数集.本文讨论整数距离图的点线性荫度,记为vla(G(D)).对于m≥5k,设D_(m,k,2)={1,2,…,m}/{k,2k),得到vla(G(D_(m,1,2)))=■并决定出了G(D_(m,2,2))在某些特殊的仇值上点线性荫度的确切值以及当k≥3时G(D_(m,k,2))的点线性荫度的上、下界.
An integer distance graph is a graph G(D) with the set of all integers Z as vertex set and two vertices u, v E Z are adjacent if and only if |u - v| E D, where the distance set D is a subset of positive integers. Here the vertex linear arboricity of integer distance graph G(D) (denoted by vla(G(D))) is studied. Let Din,k,2 = {1, 2,……, m}/{k, 2k} for m ≥ 3k. In this paper, it is obtained that vla(G(Dm,1,2))=[m/5]+1,[m+1/5]+1≤vla(G(Dm,2,2))≤{2[m/10],ifm=10l+1,2[m/10]+1,ifm=10l+j,2≤j≤4,2[m/10]+1,else. The exact values of the vertex linear arboricity of G(Dm,2,2) for some special m, and the upper and lower bounds of the vertex linear aboricity of G(Dm,k,2) for k≥ 3 are obtained.
出处
《系统科学与数学》
CSCD
北大核心
2006年第5期522-532,共11页
Journal of Systems Science and Mathematical Sciences
关键词
整数距离图
点线性荫度
路着色
Integer distance graph, vertex linear arboricity, path coloring.