期刊文献+

手写体数字识别与认证的小波特征提取 被引量:2

Wavelet Feature Extraction for the Recognition and Verification of Handwritten Numerals
下载PDF
导出
摘要 本文提出了基于Kirsch边缘增强的二维小波特征与二维复小波特征的提取技术。这两类特征与几何特征融合识别手写体数字。此外,对所提取的小波特征提取方法的优点进行了讨论。最后进行的手写体数字识别与认证实验表明,这两类混合特征的集合能获得很好的识别与认证性能。 The paper puts forth the technique for extracting the 2-D wavelet features and the 2-D complex wavelet features based on the Kirsch edge enhancement. The two types of hybrid features are congregated by combining them with the geometrical features for the recognition of handwritten numerals. In addition, the merits of the proposed wavelet feature extraction methods are discussed. Experiments based on handwritten numeral recognition and verification show that the two hybrid feature sets can achieve high recognition and verification performance.
出处 《计算机工程与科学》 CSCD 2006年第10期47-49,共3页 Computer Engineering & Science
基金 湖南省教育厅资助项目(02C429) 邵阳学院自然科学基金资助项目(2004B10)
关键词 混合特征提取 小波变换 复小波变换 OCR 人工神经网络 hybrid feature extraction wavelet transform complex wavelet transform OCR artificial neural network
  • 相关文献

参考文献5

  • 1Ching Y Suen, Christine Nadal, Raymond Legault, et al.Computer Recognition of Unconstrained Handwritten Numerals[J]. Proc IEEE, 1992, 80(7): 1162-1180.
  • 2Cheng-Lin Liu, Kazuki Nakashima, Hiroshi Sako, et al.Handwritten Digit Recognition: Investigation of Normalization and Feature Extraction Techniques[J]. Pattern Recognition,2004, 37(2):265-279.
  • 3G Y Chen, T D Bui, A Krzyzak. Image Denoising with Neighbour Dependency and Customized Wavelet and Threshold[J]. Pattern Recognition, 2005,38(1) : 115-124.
  • 4P Zhang, T D Bui, C Y Suen. Feature Dimensionality Reduction for the Verifieation of Handwritten Numerals[J].Pattern Analysis and Applieations, 2004, 37(3): 296-307.
  • 5N G Kingsbury. Image Processing with Complex Wavelets[J]. Phil Trans R Soc Lond A , 1999, 357:2543-2560.

同被引文献6

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部