期刊文献+

NURBS曲线相关积分量的计算方法 被引量:5

COMPUTING INTEGRAL VALUES INVOLVING NURBS CURVES
下载PDF
导出
摘要 本文给出了求2次和3次非均匀有理B样条(NURBS)曲线的相关积分量,例如它所包围区域的面积、旋转体体积、面积矩、形心等的算法.对于2次曲线,本文推导了一系列精确的积分公式,由此,所有积分量可用曲线的控制顶点坐标和权因子一步代入直接求得而没有逼近误差;对于3次曲线,本文展示了一种近似算法,与通常的数值积分法相比,它具有误差界估计简单,高精度下收敛速度快等优点. his paper presents an algorithm for computing quantities involving integration of NURBS curves, such as areas, volumes of revolution, first moments of area, centroids etc., of regions bounded by plane NURBS curves. For quadratic NURBS curves,closed form integral solutions are derived, thus all integral values can be directly obtaind by the coordinates of control points and weights without approximation error. For cubic NURBS curves, an approximation method is given, which provides a simple error bound and has a speed advantage for small tolerance.
作者 王国瑾
出处 《软件学报》 EI CSCD 北大核心 1996年第9期542-546,共5页 Journal of Software
基金 国家自然科学基金 曹光彪科学研究基金
关键词 NURBS曲线 相关积分 计算方法 CAD Computer aided geometric design NURBS integration area volume of revolution moments of area.
  • 相关文献

参考文献4

  • 1Wang Guozhao,CVGIP GMIP,1995年,57卷,3期,246页
  • 2王国瑾,CADDM,1994年,4卷,2期,18页
  • 3王国瑾,浙江大学学报,1992年,26卷,6期,627页
  • 4王国瑾.旋转曲面CAD的有理B样条方法[J].软件学报,1990,1(4):24-39. 被引量:2

二级参考文献2

  • 1王国瑾,高校应用数学学报,1989年,4卷,2期,157页
  • 2王国瑾,高校应用数学学报,1988年,3卷,2期,237页

共引文献1

同被引文献16

  • 1SUN JIANZHONG,CHEN FALAI AND QU YONGMING.APPROXIMATE COMMON DIVISORS OF POLYNOMIALS AND DEGREE REDUCTION FOR RATIONAL CURVES[J].Applied Mathematics(A Journal of Chinese Universities),1998,13(4):437-444. 被引量:1
  • 2刘华伟,陈耀元,王丹.三次NURBS曲线积分问题的数值方法及应用研究[J].中国造船,2006,47(1):78-83. 被引量:3
  • 3Farouki R T. Optimal parameterizations[J]. Computer Aided Geometric Design, 1997, 14(2): 153-168
  • 4Farouki R T, Sakkalis T. Real rational curves are not "unit speed"[J]. Computer Aided Geometric Design, 1991, 8(8) : 151-157
  • 5Juttler B. A vegetarian approach to optimal parameterizations [J]. Computer Aided Geometric Design, 1997, 14(9) : 887- 890
  • 6Costantini P, Farouki R T, Manni C, et al. Computation of optimal composite re-parametrlzations [J]. Computer Aided Geometric Design, 2001, 18(9): 875-897
  • 7Ong B H. An extraction of almost arc-length parameterization from parametric curves [J]. Annals of Numerical Mathematics~ 1996, 3(1) : 305-316
  • 8Wang F C, Wright P K. Open architecture controllers for machine tools, Part 2: A real time quintic spline interpolator[J]. Journal of Manufacturing Science and Engineering, 1998, 120(2): 425-432
  • 9Wang F C, Wright P K, Barsky B A, et al. Approximately arc-length parameterized C3 quintic interpolatory splines [J]. Journal of Mechanical Design, 1999, 121(3): 430-439
  • 10Saito T, Wang G J, Sederberg T W. Hodographs and normals of rational curves and surfaces [J]. Computer Aided Geometric Design, 1995, 12(4): 417-430

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部