期刊文献+

一类变时滞大系统的指数收敛率估计

Exponential Convergence Rate Estimation of a Class of Large-Scale Systems with Variable Delays
下载PDF
导出
摘要 基于一类变时滞大系统全局指数稳定性的研究结果,提出了一种大系统指数收敛率的估计方法.利用此方法对该系统的指数收敛率进行了估计,得到了系统指数收敛率的估计式.该方法以大系统的系数矩阵以及与大系统关联的李雅普诺夫矩阵方程的解构造判定矩阵,利用M-矩阵理论,来确定系统的指数收敛率,计算简便,且与时间滞后量无关,便于在实践中应用. Based on the result of exponential stability of a class of large-scale systems with variable delays, this paper presents an estimating strategy on the exponential convergence rate of the class of large-scale systems. By this estimating method, the exponential convergence rate is estimated, and the estimating inequality of the exponential convergence rate of the class of large-scale systems with variable delays is obtained. The estimating strategy is based on the properties of M-matrix and the test matrix which is constructed by employing the coefficient matrices of the large-scale systems and the solutions of the Lyapunov equations interconnected with the large-scale systems. Since the method is independent of the delays and simplifies the calculation, it is easy to apply in practice.
出处 《交通运输系统工程与信息》 EI CSCD 2006年第5期92-94,共3页 Journal of Transportation Systems Engineering and Information Technology
基金 国家自然科学基金项目(10272091) 新世纪优秀人才支持计划(NCET-04-0889)
关键词 全局指数稳定性 M矩阵 指数收敛率 大系统 时间滞后 global exponential stability M-matrix exponential convergence rate large-scale systems time delays
  • 相关文献

参考文献1

二级参考文献7

  • 1Hmamed A. Note on the stability of large-scale systems with delays [J] . IntJSystSci, 1986,17:1083-1 087.
  • 2Chang M H. Stability of interconnected stochastic delay systems [ J]. Appl Math Comput, 1985,16: 277-295.
  • 3Razumikdhin B S. The application of Lyapnnov's method to problems in the stability of systems with delay[ J ]. Automation and Remote Control, 1960,21: 515-520.
  • 4Zhang J. Absolutely exponential stability in delayed cellular neural networks[ J ]. International Journal of Circuit Theory and Applications, 2002,30(4): 395-409.
  • 5Zhang J. Globally exponential stability of neural networks with variable delays [ J ]. IEEE Trans Circuits Syst, 2003,50(2):288-291.
  • 6Mori T, Fukuma N, Kuwahara M. Simple stability criteria for single and composite linear systems with time delays [ J ]. Int J Contr, 1981,34:1 175-1 184.
  • 7Suh I H, BienZ. A note on the stability of large scale systems with delays [J] . IEEE Trans Automat Contr , 1982 ,27 : 256-258.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部