期刊文献+

有限元结构动力分析的广义特征值的神经计算 被引量:2

Finite element approach for structural dynamic analysis using generalized eigenvalue-based neurocomputing
下载PDF
导出
摘要 广义特征值问题是结构动力分析计算的关键之一.应用Reyle igh极小值原理,将神经网络的能量函数的极小点对应于广义特征值问题的最小特征值所对应的特征向量,在神经网络朝着能量函数极小点运动的同时得到了最小特征值所对应的特征向量的精确解答.从特征值的变分特性出发,给出了基于罚函数法的其他特征值的神经网络求解方案,从而在理论上给出了广义特征值问题的所有特征值的神经网络求解方法.仿真计算表明,该方法正确、有效可行. The generalized eigenvalue problem is a crucial problem for structural dynamic calculations. Based on Reyleigh's theorem of minimum, the global minimum of the energy function for neural network is mapped to the eigenvector corresponding to the minimal eigenvalue of the generalized eigenvalue problem. A precise solution for the minimal eigenvector corresponding to the minimal eigenvalue is obtained while the neural network is moving to the minimum of energy function. According to the variational characteristic of eignvalue, a neural network method using penalty function for solving other eigenvalues is also presented. Thus, neural network solving methods of all eigenvalues are derived in theory. Theoretical analysis and numerical simulation results indicate that this method is accurate and effective.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2006年第9期1523-1527,共5页 Journal of Harbin Institute of Technology
基金 国家自然科学基金资助项目(59685003) 油气藏地质及开发工程国家重点实验室开放基金资助项目
关键词 广义特征值 有限元 神经网络 动力分析 变分 generalized eigenvalue finite element neural network dynamic analysis variation
  • 相关文献

参考文献12

  • 1OMAR T,ESKANDARIAN A,BEDEWI N.behicle crash modelling using recurrent neural networks[J].Mathematical and Computer Modelling,1998,28 (9):31 -42.
  • 2LI Q S,LIU D K,FANG J Q,et al.Damping in buildings:its neural network model and AR model[J].Engineering Structures,2000,22 (9):1216-1223.
  • 3LERICHE R,GUALANDRIS D,THOMAS J J,et al.Neural identification of non-linear dynamic structures[J].Journal of Sound and Vibration,2001,248 (2):247-265.
  • 4KUZNIAR K,WASZCZYSZYN Z.Neural analysis of vibration problems of real flat buildings and data pre-processing[J].Engineering Structures,2002,24 (10):1327-1335.
  • 5WANG L X,JERRY M.Parallel structured networks for solving a wide variety of matrix algebra problems[J].Journal of Parallel and Distributed Computing,1992,14(2):236 -247.
  • 6罗发龙,李衍达,王哲.一类正定矩阵特征矢量的神经网络求解[J].中国科学(A辑),1994,24(1):83-88. 被引量:12
  • 7章毅,王平安,周明天.用神经网络计算矩阵特征值与特征向量[J].计算机学报,2000,23(1):71-76. 被引量:13
  • 8YANG H B,JIAO L C.Neural network for solving generalized eigenvalues of matrix pair[C]// ICASSP,IEEE International Conference on Acoustics,Speech and Signal Processing-Proceedings.[s.l.]:IEEE,2000:3478-3481.
  • 9黄祖兰,蒋耀林,陈明敏,林小拉.基于动力学方程求解复矩阵特征值问题的并行实现[J].计算机学报,2002,25(7):716-722. 被引量:2
  • 10BATHE K J,WILSON E L.有限元分析中的数值方法[M].北京:科学出版社,1985.

二级参考文献13

  • 1罗发龙,李衍达.求解正定矩阵最小和最大特征值对应的特征矢量[J].电子学报,1994,22(4):13-19. 被引量:9
  • 2罗发龙,李衍达,王哲.一类正定矩阵特征矢量的神经网络求解[J].中国科学(A辑),1994,24(1):83-88. 被引量:12
  • 3王哲,李衍达,罗发龙.一种用于PCA与MCA的神经网络学习算法[J].电子学报,1996,24(4):12-16. 被引量:6
  • 4[1]Saad Y. Numerical Methods for Large Eigenvalue Problems. New York: Manchester University Press, 1992
  • 5[2]Cichocki A, Unbehauen R. Neural networks for computing eigenvalues and eigenvectors. Biological Cybernetics, 1992, 68:155-164
  • 6[3]Jiang Y L, Chen R M M, Huang Z L. A parallel approach for computing complex eigenvalue problems. IEICE Trans Fundamentals of Electronics, Communications and Computer Science, 2000, 183-A(10):2000-2008
  • 7[4]Lelarasmee E, Ruehli A E, Sangiovanni-Vincentelli A L. The waveform relaxation method for time-domain analysis of large scale integrated circuits. IEEE Trans CAD of IC and Systems, 1982, 1(3):131-145
  • 8[5]Gristede G D, Zukowski C A, Ruehli A E. Measuring error propagation in waveform relaxation algorithms. IEEE Trans Circuits and Systems-Part I, 1999, 46(3):337-348
  • 9[6]Jiang Y L, Luk W S, Wing O. Convergence-theoretics of classical and Krylov waveform relaxation methods for differential-algebraic equations. IEICE Trans Fundamentals of Electronics, Communications and Computer Sciences, 1997, E80-A(10):1961-1972
  • 10[7]Burrage K. Parallel and Sequential Methods for Ordinary Differential Equations. Oxford: Clarendon Press, 1995

共引文献24

同被引文献25

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部