期刊文献+

EM算法在统计自然语言处理中的应用 被引量:1

Application of EM algorithm in statistical natural language processing
下载PDF
导出
摘要 在统计自然语言处理中会经常遇到一类参数估值问题,就是当观察数据为不完全数据时如何求解参数的最大似然估计,EM算法就是解决这类问题的经典算法。给出了EM算法的基本框架,结合HMM和PCFG模型给出如何应用EM算法求解参数的极大似然估计,讨论了EM算法的优点和不足之处。 In statistical natural language processing, one class problem is often encountered that how to estimate the parameter's maximumlikelihood estimation when observed data set is incomplete. EM algorithm is the classical method to solve this problem. The basic framework of the EM algorithm is described, and then how to apply the EM algorithm is demonstrated to solve the problem of maximumlikelihood parameters estimation combine with the models ofHMM and PCFG. Finally, the advantages and disadvantages of EM algorithm are discussed.
出处 《计算机工程与设计》 CSCD 北大核心 2006年第19期3715-3717,共3页 Computer Engineering and Design
关键词 自然语言 EM算法 参数估计 似然函数 隐马尔科夫模型 概率上下文无关文法 natural language EM algorithm parameter estimation likelihood function hidden Markov model probabilistic context free grammar
  • 相关文献

参考文献10

  • 1Bilmes J A.A gentle tutorial on the EM algorithm and its application to parameter estimation for gaussian mixture and hidden Markov models[R].Berkeley,CA:Technical Report ICSI-TR-97-021,International Computer Science Institute,1997.
  • 2Zoubin Ghahramani,Michael I Jordan.Learning from incomplete data[R].AIMemo 1509,CBCL Paper 108,MIT,1995.
  • 3Zoubin Ghahramani,Michael I Jordan.Supervised learning from incomplete data using an EM approach[C].Advances in Neural Information Processing Systems 6,(Proceedings of NIPS-93),1994.120-127.
  • 4Christopher D Manning,Hinrich Schutze.Foundations of statistical natural language Processing[M].London:The MIT Press,1999.381-403.
  • 5Rabiner L R.A tutorial on hidden Markov model and selected applications in speech recognition[J].Proc of the IEEE,1989,77(2):257-285.
  • 6Cutting D,Kupiec J,Pedersen J,et al.A practical part-of-speech tagger[C].Trento,Italy:Proceedings of the Third Conference on Applied Natural Language Processing,ACL,1992.133-140.
  • 7Schutze H,Singer Y.Part-of-speech tagging using a variable memory Markov model[C].Las Cruces,New Mexico:Proceedings of ACL 32'nd,1994.181-187.
  • 8Fine S,Singer Y,Tishby N.The hierarchical hidden Markov model:Analysis and applications[J].Machine Learning,1998,32(1):41-62.
  • 9Pereira F,Schabes Y.Inside-outside reestimation from partially bracketed corpora[C].Newark,Delaware:Proceedings of 30th Annual Meeting of the ACL,1992.128-135.
  • 10Schabes Y,Roth M,Osborne R.Parsing the wall street journal with the inside-outside algorithm[C].Uterich,The Netherlands:Proceedings of the European ACL,1993.341-347.

同被引文献6

  • 1Gordon N J, Salmond D J, Smith A F. Novel approach to nonlinear/ non-gaussian Bayesian state estimation[J]. IEEE Proc. , Part F: Radar and Signal Processing, 1993, 140(2): 107 - 113.
  • 2Arulampalam M S, Maskell S, Gordon N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J]. IEEE Trans. on Signal Processing, 2002, 50(2) : 174 - 188.
  • 3Kotecha J H, Djuric P M. Gaussian sum particle filtering[J]. IEEE Trans. on Signal Processing, 2003, 51(10): 2602-2612.
  • 4Georghiades C N, Jae C H. Sequence estimation in the presence of random parameters via the EM algorithm[J]. IEEE Trans. on Communications, 1997, 45(3) : 300 - 308.
  • 5Elanayar V T, Shin Y C. Radial basis function neural network for approximation and estimation of nonlinear stochastic dynamic systems[J]. IEEE Trans. on Neural Networks, 1994, 5 (4):594 - 603.
  • 6Hewer G A, Martin R D, Zeh J. Robust preproeessing for Kalman filtering of glint noise[J]. IEEE Trans. on Aerospace and Electronic Systems, 1987, 23(1) : 120 - 128.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部