期刊文献+

非线性弹性地基上矩形薄板的非线性振动与奇异性分析 被引量:14

NONLINEAR VIBRATION AND SINGULARITIES ANALYSIS OF A THIN RECTANGULAR PLATE ON NONLINEAR ELASTIC FOUNDATION
下载PDF
导出
摘要 研究非线性弹性地基上小挠度矩形薄板的非线性振动,应用弹性力学理论建立非线性弹性地基上小挠度矩形薄板受简谐激励作用的动力学方程,利用Galerkin方法将其转化为非线性振动方程。根据非线性振动的多尺度法求得系统主参数共振-主共振情况的一次近似解,并进行数值计算。分析了阻尼系数、地基系数、激励参数等对系统主参数共振-主共振的影响。系统主参数共振-主共振曲线均具有跳跃现象。随着阻尼、地基系数的改变,系统响应曲线具有“类软刚度特征”。随着参数激励幅值的改变,系统响应曲线具有“类硬刚度特征”。应用奇异性理论得到系统主参数共振-主共振稳态响应的转迁集和分岔图。 Nonlinear vibration of a thin rectangular plate with small deflection on the nonlinear elastic foundation is studied. By means of theory of elasticity, nonlinear dynamical equation of the rectangular thin plate on the nonlinear elastic foundation subject to harmonic excitation is established and furthermore, a nonlinear vibration equation is obtained by using Galerkin's method. Applying the method of multiple scales for nonlinear vibration, the first approximation solution of primary parametric resonance and fundamental resonance of the system is acquired. Numerical analysis on the influences of damping, foundation coefficient, and excitation parameter on the system is carried out. On the response curves of primary parametric resonance and fundamental resonance of the system exsit jump phenomena. The characteristic due to hard or soft stiffness may be altered as the parameters of damping, foundation, and excitation on the system are varied. The transition sets and bifurcation diagrams on the unfolding parametric plane and illustrated.
出处 《振动与冲击》 EI CSCD 北大核心 2006年第5期69-73,共5页 Journal of Vibration and Shock
关键词 非线性弹性地基 GALERKIN方法 多尺度法 矩形薄板 主参数共振 主共振 Nonlinear elastic foundation, Galerkin's method, method of multiple scales, thin rectangular plate, primary parametric resonance, fundamental resonance
  • 相关文献

参考文献12

  • 1Sathyamoorthy M. Nonlinear vibration of plates-a review, Shock Vib. Digest,1983,15:3-16.
  • 2Zhang Wei, Liu Haomiao. Global Dynamics of Parametrically and Externally Thin Plate[J] ,2001,24:245-268.
  • 3付宝连.弯曲薄板功的互等新理论[M].北京:科学出版社2002.
  • 4韩强,杨桂通.非线性大挠度矩形板中内共振导致的分叉[J].固体力学学报,2001,22(2):199-204. 被引量:17
  • 5曲庆璋,梁兴复.弹性地基上自由矩形板的非线性动静态分析[J].工程力学,1996,13(3):40-46. 被引量:19
  • 6Gajiendar N. Large amplitude vibrations of plates on elastic foundation [J]. Int J Nonlinear Mech, 1967,2 ( 1 ) : 163-168.
  • 7Nath. Large amplitude response of circular plate on elastic foundation[J]. Int J Nonlinear Mech, 1982,17(4) :285-296.
  • 8Dumir P C. Nonlinear vibration and postbucking of isotropic thin circular plate on elastic foundation [J]. Journal of Sound and Vibration, 1986,107 (2) :253-263.
  • 9邱平,王新志,叶开沅.非线性弹性地基上的圆薄板的分岔与混沌问题[J].应用数学和力学,2003,24(8):779-784. 被引量:26
  • 10Nayfeh A H, Mook D T. Nonlinear Oscillations, New York:Wiley-Interscience, 1979.

二级参考文献26

  • 1梁兴复,曲庆璋.弹性地基上四边自由正交各向异性矩形板的一般精确解[J].建筑结构学报,1994,15(2):70-75. 被引量:9
  • 2曲庆璋,梁兴复.Winkler地基上四边自由矩形板的非线性弯曲问题[J].土木工程学报,1995,28(1):46-54. 被引量:7
  • 3唐建宁.硬弹簧Duffing方程的全局分叉[J].力学与实践,1987,(1):33-34.
  • 4赵永刚 王新志 丁雪兴 等.静载荷作用下弹性地基上圆薄板的小阻尼非线性振动[A].焦善庆主编.数学?力学?物理?高新技术研究进展[C].成都:西南交通大学出版社,2000.104-109.
  • 5陈予恕 唐云.非线性动力学的现代分析方法[M].北京:科学出版社,2000.167-168.
  • 6Nayfeh A H, Mook D T. Nonlinear Dynamics. New York :Wiley, 1979
  • 7Wang H O,Abed E H. Robust control of period doubling bifurcations and implications for control of chaos. In..Proc. of 33rd IEEE Conf. Decision and Control ,Orlando,1994:3 287-3 292
  • 8Wang H O,Abed E H. Bifurcation control of a chaotic system. Automatic, 1995;31:1 213-1 226
  • 9Kang W. Bifurcation and normal form of nonlinear control systems. Parts I and Ⅱ ,SIAM J. Contr. Optim. ,1998;36:193-232
  • 10Chen D,Wang H O,Chen G. Anti-control of Hopf bifurcation through washout filters. In:Proc of 37th IEEE Conf. Decision and Control, Tampa, FL, Dec. 1998; 16-18:3 040-3 045

共引文献43

同被引文献114

引证文献14

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部