期刊文献+

Document classification approach by rough-set-based corner classification neural network 被引量:1

一种基于粗糙集角分类神经网络的文档分类方法(英文)
下载PDF
导出
摘要 A rough set based corner classification neural network, the Rough-CC4, is presented to solve document classification problems such as document representation of different document sizes, document feature selection and document feature encoding. In the Rough-CC4, the documents are described by the equivalent classes of the approximate words. By this method, the dimensions representing the documents can be reduced, which can solve the precision problems caused by the different document sizes and also blur the differences caused by the approximate words. In the Rough-CC4, a binary encoding method is introduced, through which the importance of documents relative to each equivalent class is encoded. By this encoding method, the precision of the Rough-CC4 is improved greatly and the space complexity of the Rough-CC4 is reduced. The Rough-CC4 can be used in automatic classification of documents. 针对文档分类过程中不同大小文档表示、文档特征选择和文档特征编码问题,提出了一种基于粗糙集的角分类神经网络Rough-CC4.利用近义词构成等价类,以此表示文档,可以缩小文档表示的维数、解决由于文档不同大小导致的精度问题、模糊近义词之间的差别;利用二进制编码方法对文档特征编码,可以提高Rough-CC4的精度,同时减小Rough-CC4的空间复杂度.Rough-CC4可以广泛用于大量文档集合的自动分类.
出处 《Journal of Southeast University(English Edition)》 EI CAS 2006年第3期439-444,共6页 东南大学学报(英文版)
基金 The National Natural Science Foundation of China(No.60503020,60373066,60403016,60425206),the Natural Science Foundation of Jiangsu Higher Education Institutions ( No.04KJB520096),the Doctoral Foundation of Nanjing University of Posts and Telecommunication (No.0302).
关键词 document classification neural network rough set meta search engine 文档分类 神经网络 粗糙集 元搜索引擎
  • 相关文献

参考文献2

二级参考文献8

  • 1[1]Broder,A.Z.,Glassman,S.C.,Manasse,M.S.Syntactic clustering of the Web.Technical Report,1997-015,Palo Alto,CA:Digital Systems Research Center (Digital),1997.
  • 2[2]Chang,C.H.,Hsu,C.C.Customizable multi-engine search tool with clustering.Computer Network and ISDN Systems,1997,29(8-13):1217~1224.
  • 3[3]Chen,L.,Katya,S.Webmate:a personal agent browsing and searching.In:Sycara,K.P.,Wooldridge,M.,eds.Proceedings of the 2nd International Conference on Autonomous Agents.New York:ACM Press,1998.132~139.
  • 4[4]Ron,W.,Bienvenido,V.,Mark,A.S.,et al.Hypursuit:a hierarchical network search engine that exploits content-link hypertext clustering.In:ACM,ed.Proceedings of the 7th ACM Conference on Hypertext.New York:ACM Press,1996.180~193.
  • 5[5]Ackerman,M.,Billsus,D.,Gaffney,S.,et al.Learning probabilistic user profiles.AI Magazine,1997,18(2):47~56.
  • 6[6]Cheeseman,P.,Stutz,J.Bayesian classification (autoclass):theory and results.In:Fayyad,U.M.,Piatetsky-Shapiro,G.,Smyth,P.,et al.,eds.Advances in Knowledge Discovery and Data Mining.Menlo Park,CA:AAAI/MIT Press,1996.153~180.
  • 7[7]Agrawal,R.,Srikant,R.Fast algorithm for mining association rules.In:Jorge,B.B,Matthias,J.,Carlo,Z.,eds.Proceedings of the 20th International Conference on Very Large Databases.Santiago:Morgan Kaufmann Publishers,Inc.,1994.487~499.
  • 8Jagadish,H.V.A retrieval technique for similar shapes.In:Garcia-Molina,H.Jagadish,H.V. eds[].Proceedings of theACM SIGMOD Conference.1990

共引文献51

同被引文献11

  • 1CUI Zifeng,XU Baowen,ZHANG Weifeng,XU Junling.A New Approach of Feature Selection for Text Categorization[J].Wuhan University Journal of Natural Sciences,2006,11(5):1335-1339. 被引量:6
  • 2Sebastiani F.Machine Learning in Automated Text Categori- zation[].ACM Computing Surveys.2002
  • 3Lewis D.Naive Bayes at Forty: The Independence Assump- tion in Information Retrieval[].Proceedings of the th European Conference on Machine Learning.1998
  • 4Xu Baowen,Zhang Weifeng,Chu William C, et al.Applica- tion of Data Mining in WWW Pre-Fetching[].Proceedings of IEEE MSE.2000
  • 5Zhang Weifeng,Xu Baowen,Chu William C.Data Mining Algorithms for WWW Pre-Fetching[].Proceedings of the st International Conference on WWW Information Systems Engineering(WISE’).2000
  • 6Zhang Weifeng,Xu Baowen,Song W, et al.Pre-Fetching WWW Pages through Data Mining Based Prediction[].Journal of Applied System Studies.2002
  • 7Richard O D,Peter E H,David G S.Pattern Classification[]..2000
  • 8Jason D M R,,Lawrence S,Jaime T, et al.Tackling the Poor Assumptions of Naive Bayes Text Classiers[].Proceeding th Internal Conference.2003
  • 9Joachims T.Text Categorization with Support Vector Ma- chines: Learning with Many Relevant Features[].Machine Learning: ECML- Tenth European Conference on Machine Learning.1998
  • 10Dash M,Liu H.Feature Selection for Classification[].Inter- national Journal of Intelligent Data Analysis.1997

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部