摘要
在自然数中,任意自然数n都可由若干个1通过加、减、乘法运算表示出来;也可以去掉减号,由若干个1通过加和乘法表示出来。在n的所有可能的表示法中,我们分别用f(n)和g(n)记这两种表示法中包含1的个数最少的那种表示法中所含1的个数,参考文献[1]中给出了f(n)的一个较强的上下界估计,本文进一步证明了不等式3log3n≤f(n)≤3.68log3n3log3n≤g(n)≤4.76log3n并讨论了∑n≤xf(n),∑n≤xg(n)。
On the natural numbers , let f(n) be the lease mumber of ones that can be used to represent n using ones and number of +,-and × signs;let g(n) be the least number of ones that can be used to represent n using ones and any number of + and × sings. The is to give an estimate of upper and lower bounds of f(n).This paper is to prove 3 log 3n≤f(n)≤3.68 log 3n 3 log 3n≤g(n)≤4.76 log 3n and discuss the asymptotic characteristic of ∑n≤x f(n) and ∑n≤x g(n).
出处
《延安大学学报(自然科学版)》
1996年第4期9-12,共4页
Journal of Yan'an University:Natural Science Edition