摘要
本文研究了一阶非线性具偏差变元的超前型泛函微分方程:x(t)=a(t)∏mi=1[x(t+rj(t))]αj(*)及x(t)=a(t)f[x(t+r1(t)),x(t+r2(t)),…,x(t+rm(t)]+g[t,x(t),x(t+r1(t)),…,x(t+rm(t))](**)解的振动性问题。
In this papar ,the oscillations of the solutions of first-order nonlinear advanced functional differential equation with argumcnts X(t)=a(t) mj=1[X(t+r j(t))] =j(*) and X(t)=a(t)f[X(t+r 1(t)),X(t+r 2(t)),…,X(t+r m(t))] +g[t,X(t),X(t+r 1(t)),…,X(t+r m(t))](**) sufficient condition for all solutions of the oscillutory are oblained (*) and (**).
出处
《延安大学学报(自然科学版)》
1996年第4期16-22,45,共8页
Journal of Yan'an University:Natural Science Edition
关键词
非线性
超前型
泛函微分方程
振动性
nonlinear, advanced, funetional differential eguation, oscillation.