期刊文献+

张量分析中简化记法在公式推导中的应用及张量分量的计算 被引量:1

APPLICATION OF LACONIC NOTATIONS IN FORMULA DERIVATION AND CALCULATION OF COMPONENTS IN TENSOR ANALYSIS
下载PDF
导出
摘要 张量分析在计算力学中应用广泛,但其理论比较复杂,较难掌握和熟练运用。为此,给出了张量简化记法,这种记法与Fortran程序中或商业软件Matlab中的数组形似。将简化后张量的表达式应用于公式推导,可快速准确地得出结论。同时,通过引入矩阵的矢量化概念,将四阶张量的分量用一个方阵表示出来,这有利于符号运算和数值计算。以上两者结合可使得张量分析变得易于掌握,也有利于张量运算的推广。 Tensor analysis plays an important role in computational mechanics. Due to its complexity, the theory is hard to be accepted and applied conveniently. To solve this problem, laconic notations for tensors are presented here to simplify formula derivation in tensor analysis. These notations are different from traditional ones of tensors. They are similar to arrays used in Fortran routine or commercial software Matlab. Laconic notations for the operations of tensors such as dyadic product, inner product and transposition etc. are given, respectively. By this method, one can derive formula easily and accurately. Another point in this work is that a simple method of obtaining the components of a fourth-order tensor is presented by introducing the concept of vectorization of matrix. It makes the components of high-order tensors to be visual and straightforward for symbolic operation and numerical calculation. The theory of tensor analysis will be easy to master if one grasps these two points of this article.
出处 《工程力学》 EI CSCD 北大核心 2006年第10期45-48,共4页 Engineering Mechanics
关键词 张量分析 张量积 简化记法 矩阵的矢量化 张量分量 tensor analysis dyadic product laconic notation vectorization of matrix component of a tensor
  • 相关文献

参考文献13

  • 1Itskov M.On the theory of fourth-order tensors and their applications in computational mechanics[J].Comput.Meth.Appl.Mech.Engng,2000,189(2):419~438.
  • 2Leedham-Green C R,O'Brien E A.Tensor products and projective geometries[J].Journal of Algebra,1997,189(2):514~528.
  • 3Lu J,Papadopoulos P.Representations of Kronecker powers of orthogonal tensors with applications to material symmetry[J].Int.J.Solids Struct,1998,35(30):3935~3944.
  • 4Miehe C.Comparison of two algorithms for the computation of fourth-order isotropic tensor functions[J].Comput.Struct,1998,66(1):37~43.
  • 5Ilyin V A,Kryukov A P.Atensor-reduce program for tensor simplification[J].Comput.Physics Communications,1996,96(1):36~52.
  • 6Portugal R.An algorithm to simplify tensor expressions[J].Comput.Physics Communications,1998,115(2):215~230.
  • 7黄筑平.连续介质力学基础[M].北京:高等教育出版社,2003.
  • 8匡震邦.非线性连续介质力学[M].上海:上海交通大学出版社,2002.
  • 9庄茁译.连续体和结构的非线性有限元[M].北京:华大学出版社,2002.
  • 10黄克智,薛明德,陆明万.张量分析[M].北京:清华大学出版社,2003.

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部