期刊文献+

不同梁理论之间简支梁特征值的解析关系 被引量:15

ANALYTICAL RELATIONSHIPS OF SIMPLY-SUPPORTED BEAM’S EIGENVALUES USING DIFFERENT BEAM THEORIES
下载PDF
导出
摘要 利用Euler-Bernoulli梁理论(EBT)、Timoshenko梁理论(一阶理论,TBT)和Reddy三阶梁理论(RBT)之间,梁的特征值问题在数学上的相似性,研究了不同梁理论之间特征值的关系。将特征值问题的求解转化为一个代数方程的求解,并导出了不同梁理论之间梁的特征值之间的精确解析关系。因此,只要已知梁的经典结果(临界载荷和固有频率),便很容易从这些关系中获得一阶和三阶梁理论下的相应结果。另外,从这些关系中获得的含有剪切变形影响的结果,可以用于检验一阶和三阶梁理论下梁数值结果的有效性、收敛性以及精确性等问题。 Based on the mathematical similarity in the eigenvalue problem of Euler-Bemoulli beam theory, Timoshenko beam theory and Reddy's third-order beam theory, relationships of the eigenvalues of the three theories for simply-supported beams are investigated. Solving of the eigenvalue problem is converted into an algebra equation to be solved and the analytical relationships of the three theories are expressed explicitly. These relationships enable the conversion of the classical (Euler-Bernoulli) beam solutions to their shear deformable counterparts using the Timoshenko beam theory and Reddy's third-order beam theory. The shear deformable results obtained from these relationships may be used to check the validity, convergence and accuracy of numerical results of the Timoshenko beam theory and Reddy's third-order beam theory.
出处 《工程力学》 EI CSCD 北大核心 2006年第10期91-95,共5页 Engineering Mechanics
基金 国家自然科学基金资助项目(10472039) 甘肃省自然科学基金资助项目(ZS041-A25-007)
关键词 Euler-Bernoulli梁理论 TIMOSHENKO梁理论 Reddy三阶梁理论 特征值 解析关系 Euler-bemoulli beam theory Timoshenko beam theory Teddy's third-order beam theory eigenvalue analytical relationship
  • 相关文献

参考文献12

  • 1Wang C M.Timoshenko beam-bending solutions in terms of Euler-Bernoulli solutions[J].Journal of Engineering Mechanics ASCE,1995,121:763~765.
  • 2Reddy J N,Wang C M,Lee K H.Relationships between bending solutions of classical and shear deformation beam theories.International Journal of Solids and Structures[J].1996,34:3373~3384.
  • 3Lim C W,Wang C M,Kitipornchai S.Timoshenko curved beam bending solutions in terms of Euler-bernoulli solutions[J].Archive of Applied Mechanics,1997,67:179~190.
  • 4Reddy J N,Wang C M,Lim G T,Ng K H.Bending solutions of Levinson beams and plates in terms of the classical theories[J].International Journal of Solids and Structures,2001,38:4701~4720.
  • 5Reddy J N,Wang C M.Relationships between classical and shear deformation theories of axisymmetric circular plates[J].AIAA Journal,1997,35:1862~1868.
  • 6Reddy J N,Wang C M.Deflection relationships between classical and third-order plate theories[J].Acta Mechanica,1998,130:199~208.
  • 7Reddy J N,Wang C M.An overview of the relationships between solutions of the classical and shear deformation plate theories[J].Composites Science and Technology,2000,60:2327~2335.
  • 8Wang C M,Lee K H.Buckling load relationship between Reddy and Kirchhoff circular plates[J].Journal of Franklin Institute,1998,335:989~995.
  • 9Wang C M,Reddy J N.Buckling load relationship between Reddy and Kirchhoff plates of polygonal shape with simply supported edges[J].Mechanics Research Communications,1997,24:103~108.
  • 10Wang C M,Kitipornchai S,Reddy J N.Relationship between vibration frequencies of Reddy and Kirchhoff polygonal plates with simply supported edges[J].ASME Journal of Vibration and Acoustics,2000,122:77~81.

同被引文献110

引证文献15

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部