期刊文献+

金属预成形优化设计及凝聚函数方法 被引量:2

OPTIMIZATION DESIGN OF METAL PREFORMING WITH AGGREGATE FUNCTION METHOD
下载PDF
导出
摘要 研究了金属预成形设计中的形状优化设计问题及相应的求解算法,并讨论了凝聚函数在这类问题中的应用。金属预成形设计在本质上是一类反问题,给出采用形状优化设计方法求解这类问题的数学模型,讨论了目标函数构造方法对数值计算收敛性的影响。提出采用凝聚函数将∞-范数形式的形状误差函数转化为光滑可微的目标函数,显著提高了求解以金属预成形设计为背景的优化问题的收敛性。采用流动模型描述金属材料高温下的变形过程,利用基于梯度的数学规划方法求解了金属预成形优化设计问题。数值算例验证了所提出方法的有效性。 This paper addresses the shape optimization formulation for metal preform design problem, as well as the corresponding solution techniques. The metal preform design is an inverse problem in nature and it is stated as a shape optimization problem in the present paper. Different objective functions are discussed from the computational point of view. A mathematical statement of the metal preform design problem is proposed based on the Aggregate Function, with the purpose to convert the ∞-Norm of the shape error into a smooth and differentiable objective function and thus to improve the convergence of the solution of the optimization problem. The flow formulation is adopted for simulation of the metal forming process at high temperatures. With a gradient-based mathematical programming approach, the metal preform design optimization problem can be solved. A numerical example demonstrates the validity of the proposed method.
出处 《工程力学》 EI CSCD 北大核心 2006年第10期96-100,共5页 Engineering Mechanics
基金 国家自然科学基金重大研究计划项目(90305019) 创新研究群体基金项目(10421002) 辽宁省自然科学基金项目(20032118)
关键词 计算力学 优化设计 预成形设计 金属成形 凝聚函数 率相关 computational mechanics optimal design preform design metal forming Aggregate Function rate dependent
  • 相关文献

参考文献10

  • 1.
  • 2Fourment L,Chenot J L.Optimal design for non-steady-state metal forming processes.I.Shape optimal design method[J].Int.J.Numer.Meth.Eng.,1996,(39):33~50.
  • 3Castro C F,Antonio C A C,Sousa L C.Optimisation of shape and process parameters in metal forging using genetic algorithms[J].Journal of Materials Processing Technology,2004,146 (3):356~364.
  • 4Akkaram Srikanth,Nicholas Zabaras.Shape optimization and preform design in metal forming processes[J].Computer Methods in Applied Mechanics and Engineering,2000,190(13,14):1859~1901.
  • 5金洪臻译.不可微最优化[M].大连:大连理工大学出版社,1991.
  • 6.
  • 7Cheng Gengdong,Kang Zhan,Wang Gang.Dynamic optimization of a turbine foundation[J].Structural Optimization,1997,13:244~249.
  • 8Kang Zhan,Robust design optimization of structures under uncertainties[M].Shaker Verlag,Aachen,Germany,2005.
  • 9Kang Zhan,Gu Yuanxian.Sensitivity analysis of viscoplastic deformation process with applications to metal forming optimization[C].WCCM Ⅵ in conjunction with APCOM'04,Beijing,Tsinghua University Press & Springer-Verlag,2004.
  • 10Kang Zhan,Gu Yuanxian.Sensitivity analysis of inelastic deformation process with applications to design optimization[Z].Submitted to Journal of Materials Processing Technology,2005.

同被引文献49

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部