期刊文献+

椭圆offset曲线的多项式逼近算法 被引量:2

A Polynomial Approximation Algorithm for Calculating Offsets of Ellipse Curves
下载PDF
导出
摘要 首先对椭圆进行必要的细分,然后将每一段椭圆弧的offset曲线用一段Bézier曲线逼近,进而得到G1连续的分段Bézier曲线作为椭圆offset曲线的近似.该算法一方面给出了计算Bézier曲线段控制顶点的表达形式,计算简单;另一方面对offset曲线的逼近误差给出了整体估计,并且利用整体误差估计决定细分椭圆的段数,构造了满足给定容差的近似曲线. An algorithm to approximate offsets of ellipse curves by piecewise cubic Bézier segments is proposed. After some necessary partition, the offset curve of each elliptic arc is approximated by a cubic Bézier segment. And then the whole offset curve with G^1 is obtained. On one hand, the algorithm is simple to calculate because the control points of the Bézier segment can be expressed explicitly. On the other hand, the global error estimation for the algorithm is given. The error estimation can be used to determine the number of the segments in the partition of the ellipse.é
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2006年第10期1594-1598,共5页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(60403047) 国家重点基础研究发展规划项目(2004CB719400) 全国优秀博士学位论文作者专项资金(200342) 新世纪优秀人才支持计划(NCET-04-0088)
关键词 offset曲线 椭圆 BÉZIER曲线 HAUSDORFF距离 offset curve ellipse Bézier curve Hausdorff distance
  • 相关文献

参考文献14

  • 1Pang Junhua,Narayanaswami Ranga.Multiresolution offsetting and loose convex hull clipping for 2.5D NC machining[J].Computer-Aided Design,2004,36(7):625-637
  • 2Shan Y,Wang S L,Tong S G.Uneven offset method of NC tool path generation for free-form pocket machining[J].Computers in Industry,2000,43(1):97-103
  • 3田启明,罗予频,胡东成.Spiral刺绣针法的路径生成算法[J].计算机辅助设计与图形学学报,2006,18(1):9-13. 被引量:4
  • 4Pottmann H.Rational curves and surfaces with rational offsets[J].Computer Aided Geometric Design,1995,12(2):175-192
  • 5Cob ES.Design of sculptured surfaces using the B-spline representation[D].Salt Lake City:University of Utah,1984
  • 6Coquillart S.Computing offsets of B-spline curves[J].Computer-Aided Design,1987,19(6):305-309
  • 7Tiller W,Hanson E G.Offsets of two dimensional profiles[J].IEEE Computer Graphics and Applications,1984,4(9):36-46
  • 8Lee I K,Kim M S,Elber G.Planar curve offset based on circle approximation[J].Computer-Aided Design,1996,28(8):617-630
  • 9Ahn Youngjoon,Kim Yeonsoo,Shin Youngsuk.Approximation of circular arcs and offset curves by Bézier curves of high degree[J].Journal of Computational and Applied Mathematics,2004,167(2):405-416
  • 10Piegl L A,Tiller W.Computing offsets of NURBS curves and surfaces[J].Computer-Aided Design,1999,31(2):147-156

二级参考文献14

  • 1Hansen A, Arbab F. An algorithm for generating NC tool path for arbitrary shaped pockets with islands [J]. ACM Transactions on Graphics, 1992, 11(2): 152-182.
  • 2Held M, Lukaes G, Andor L. Pocket machining based on contour parallel tool paths generated by means of proximity maps[J]. Computer-Aided Design, 1994, 26(3): 189-203.
  • 3Persson H. NC machining of arbitrary shaped pockets [J].Computer-Aided Design, 1978, 10(3): 169-174.
  • 4Park S C, Chung Y C, Choi B K. Contour parallel offset machining without tool-retractions [J]. Computer-Aided Design, 2003, 35(9): 841-849.
  • 5Choi B K, Park S C. A pair-wise offset algorithm for 2D point sequence curve [J]. Computer Aided Design, 1999, 31(12):735-745.
  • 6Held M, On the computational geometry of pocket machining[M], Berlin: Springer, 1991; LNCSS00.
  • 7Held M. Vomnoi diagrams and offset curves of eurvilinear polygons [J]. Computer-Aided Design, 1998, 30(4): 287-300.
  • 8Aichholzer Oswin, Aurenhammer Franz. Straight skeletons for general polygonal figures in the plane [C] //Proceedings of the 2nd Annual International Conference on Computing and Combinatorics, Hong Kong, 1996, 1090:117-126.
  • 9Felkel Petr, Obdrzdlek Stepan. Straight skeleton implementation [C] // Proceedings of the 14th Spring Conference on Computer Graphics, Budmerice, 1998:210-218.
  • 10Eppstein D, Erickson J. Raising roofs, crashing cycles, and playing pool: applications of a data structure for finding pair-wise interactions [J]. Discrete and Computational Geometry, 1999,22(4): 569-592.

共引文献3

同被引文献22

  • 1单岩,谢龙汉.基于数控刀位轨迹的电火花成形加工中电极平动补偿和修正[J].机械工程学报,2005,41(3):189-192. 被引量:1
  • 2王刚,单岩,吴荣仁.电火花摇动加工中的曲面非均匀偏置补偿技术[J].浙江大学学报(工学版),2006,40(9):1604-1608. 被引量:6
  • 3Dokken T, Daehlen M, I.yche T, et al. Good approximation of circles by curvature continuous Bezier curves [J]. Computer Aided Geometric Design, 1990, 7(1/4): 33-41.
  • 4Goldapp M. Approximation of circular arcs by cubic polynomials [J]. Computer Aided Geometric Design, 1991, 8(3) : 227-238.
  • 5Ahn Y J, Kin, H O. Approximation of circular arcs by Bezier[J]. Journal of Computational and Applied Mathematics, 1997, 81(1): 145-163.
  • 6Coquillart S. Computing offsets of B spline curves [J]. Computer-Aided Design, 1987, 19(6): 305-309.
  • 7Lee I K, Kim M S, Elher G. Planar curve offset based on circle approximation [J]. Computer Aided Design, 1996, 28 (8): 617-630.
  • 8Ahn Y J, Kim Y S, Shin Y. Approximation of circular arcs and offset curves by Bezier curves of high degree [J]. Journal of Computational and Applied Mathematics, 2004, 167 (2) : 405-416.
  • 9Rabahah A. Transformation of Chebyshev-Bernstein polynomial basis [J]. Computational Methods in Applied Mathematics, 2003, 3(4): 608-622.
  • 10Lee I K, Kim M S, Elber G. Polynomial/rational approximation of Minkowski sum boundary curves [J]. Graphical Models and Image Processing, 1998, 60(2): 136-165.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部