摘要
对一类含时滞的部分耗散的反应扩散方程的渐近行为进行研究.由于该系统所对应的半群算子非紧,利用算子分解的方法将半群算子分解为两个:一个是连续并且渐近趋于零,另一个是一致紧,从而由经典的吸引子存在理论得出该方程拥有一个全局吸引子的充分条件.
This paper investigates the asymptotic behavior for a class of partly dissipative reaction diffusion equations with delays. Since the semigroup operators associated with this system is not compact, the semigroup operators are divided into two parts : one is continuous and decays to zero and the other is uniformly compact. Thereby a sufficient condition is given for the equation to have a global attractor by the classic existence theory of attractor.
出处
《四川师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2006年第5期521-525,共5页
Journal of Sichuan Normal University(Natural Science)
基金
国家自然科学基金(10371083)
四川省应用基础基金资助项目
关键词
时滞
部分耗散
反应扩散方程
全局吸引子
Time delays
Partly dissipative
Reaction-diffusion equations
Global attractor