期刊文献+

含时滞的部分耗散反应扩散方程的全局吸引子 被引量:3

Global Attractor of Partly Dissipative Reaction Diffusion Equations with Delays
下载PDF
导出
摘要 对一类含时滞的部分耗散的反应扩散方程的渐近行为进行研究.由于该系统所对应的半群算子非紧,利用算子分解的方法将半群算子分解为两个:一个是连续并且渐近趋于零,另一个是一致紧,从而由经典的吸引子存在理论得出该方程拥有一个全局吸引子的充分条件. This paper investigates the asymptotic behavior for a class of partly dissipative reaction diffusion equations with delays. Since the semigroup operators associated with this system is not compact, the semigroup operators are divided into two parts : one is continuous and decays to zero and the other is uniformly compact. Thereby a sufficient condition is given for the equation to have a global attractor by the classic existence theory of attractor.
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第5期521-525,共5页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(10371083) 四川省应用基础基金资助项目
关键词 时滞 部分耗散 反应扩散方程 全局吸引子 Time delays Partly dissipative Reaction-diffusion equations Global attractor
  • 相关文献

参考文献15

  • 1Babin A V,Vinshik M I.Attractors of partial differential equations and estimates of their dimension[ J].Russian Math Surveys,1983,38:151-213.
  • 2Babin A V,Vinshik M I.Regular attractors of semigroups and evolution equations[ J].J Math Pures Appl,1983,62:441-491.
  • 3Kopell N,Ruelle D.Bounds on complexity in reaction-diffusion systems[ J].SIAM J Appl Math,1986,46:68-80.
  • 4Marion M.Attractors for reaction-diffusion equations:existence and estimate of their dimension[ J ].Appl Anal,1987,25:101-147.
  • 5Wu J.Theory and Application of Partial Functional Differential Equations[ M ].New York:Springer-Verlag,1996.
  • 6李树勇.一类时滞偏生态模型的振动性[J].四川师范大学学报(自然科学版),2002,25(6):595-597. 被引量:11
  • 7王长有,李树勇,杨治国.含时滞的反应扩散方程周期解的存在唯一性[J].四川师范大学学报(自然科学版),2004,27(4):339-342. 被引量:6
  • 8宿娟,李树勇.一类含时滞的非线性抛物型方程组的周期解[J].四川师范大学学报(自然科学版),2005,28(6):650-654. 被引量:4
  • 9Xu Dao-yi.Global attractor of reaction-differential equations with delays[ J ].Proc Int Diff Eqs Compimulations World Scientific,2000:317-377.
  • 10Wang Lin-san,Xu Dao-yi.Asymptotic behavior of a class of reaction-diffusion equations with delays[J].J Math Anal Appl,2003,281:439-453.

二级参考文献37

共引文献25

同被引文献25

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部