期刊文献+

3维Ginzburg-Landau方程涡旋集的结构

The Structure of Vortics Set for Ginzburg-Landau Equations in Dimension 3
下载PDF
导出
摘要 在假定外加磁场|h_(ex)|=o(|lnε|)以及涡旋能量以|lnε|阶爆破的前提下,借助几何测度论工具,分析了三维Ginzburg-Landau超导方程涡旋集的结构.粗略地说,它是由线段构成的一维可求长集合. In this paper, the structure of vortices set of the Ginzburg-Landau equations of the superconductivity in dimension 3 is considered, under the assumption that |hex|=0(|Inε|) and that the vortices energy blows up like |lnε|. It is a 1-dimensional rectifiable set with zero mean curvature. Speaking roughly, this set consists of one or more line segments.
作者 刘祖汉 周玲
出处 《数学年刊(A辑)》 CSCD 北大核心 2006年第5期571-586,共16页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.10471119) 教育部优秀青年教师资助计划资助的项目
关键词 涡旋 GINZBURG-LANDAU方程 几何测度论 超导 Vortices, Ginzburg-Landau equations, Geometric measure theory
  • 相关文献

参考文献21

  • 1Alama S., Bronsard L. and Montero J. A., On the Ginzburg-Landau model of a superconducting ball in a uniform field [J]. Annales de l'Institute Henri Poincare (C)Non-linear Analysis, 2006, 23(2):237-267.
  • 2Ambrosetti L. and Soner M., A measure theoretic approach to higher codimension mean curvature flow [J]. Ann. Scuola Norm. Sup. Pisa, CI. Sci., 1997, 25:27-49.
  • 3Bethuel F., Brezis H. and Helein F., Ginzburg-Landau Vortices [M]. Boston: Birkhauser,1994.
  • 4Bethuel F., Brezis H. and Orlandi G., Asymptotics for the Ginzburg-Landau equation in arbitrary dimensions [J]. J. Funct. Anal., 2002, 188:548-549.
  • 5Bethuel F., Orlandi G. and Smets D., Convergence of the parabolic Ginzburg-Landau equation to motion by mean curvature [J], C. R. Acad. Sci. Paris, Set. I, 2003, 336:719-723.
  • 6Bethuel F., Orlandi G. and Smets D., Vortex rings for the Gross-Pitaevskii equation[J]. J. Eur. Math. Soc., 2004, 6:17-94.
  • 7Bethuel F., Orlandi G. and Smets D., Approximations with vorticity bounds for the Ginzburg-Landau functional [J]. Commun. in Contemporary Math., 2004, 6(5):803-832.
  • 8Bourgain J., Brezis H. and Mironescu P., On the structure of the Sobolev space H^1/2 with values into the circle [J]. C. R. Acad. Sci. Paris, Ser. I, 2000, 331:119-124.
  • 9Jerrard R., Montero A. and Sternberg P., Local minimizers of the Ginzburg-Landau energy with magnetic field in three dimensions [J]. Commun. Math. Phys., 2004, 249:549-577.
  • 10Lin F. H. and Riviere T., Complex Ginzburg-Landau equation in high dimension and codimension 2 area minimizing currents [J]. J. Eur. Math. Soc., 1999, 1:237-311. Erratum, Ibid.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部