期刊文献+

广义Kawahara方程的Cauchy问题 被引量:2

On the Cauchy Problem of Generalized Kawahara Equations
下载PDF
导出
摘要 对初值在Besov空间中的广义Kawahara方程(?)_tu+αu^k(?)_xu+β(?)_x^3u+γ(?)_x^5u=0进行了研究,其中k是大于4的正整数,证明了对任意的1≤q≤∞,其Cauchy问题在Besov空间B_(2,q)^(sk)(R)和B_(2,q)~s(R)中局部适定,这里s_k=(k-8)/2k,s>max(0,s_k);对小初值问题几乎整体适定.并证明了如果β=0或βγ<0,对小初值问题整体适定. This paper studies the Cauchy problem of the generalized Kawahara equations 偏倒dtu+αu^k偏倒dxu+β偏倒d^3xu+γ偏倒du^5xu=0 where k is an integer greater than 4, with initial data in Besov spaces. It is proved that for any 1 ≤ 〈 q≤∞ the Cauchy problem of this equation is locally well-posed in the Besov spaces B2,q(R) and B^8k 2,q(R) where sk = k-8/2k and s 〉 Sk, and almost globally well-posed in these spaces if initial data are small, and also proves that if either β = 0 or βγ〈 0, then global well-posedness holds in these spaces for small initial data problem.
作者 郭艾 崔尚斌
机构地区 中山大学数学系
出处 《数学年刊(A辑)》 CSCD 北大核心 2006年第5期595-614,共20页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.10471157) 中山大学高等学术研究中心(06M11)资助的项目
关键词 广义Kawahara方程 CAUCHY问题 适定性 BESOV 空间 Generalized Kawahara equations, Cauchy problem, Well-posedness, Besov space
  • 相关文献

参考文献20

  • 1Abramyan L. A. and Stepanyants Yu. A., The structure of two-dimensional solitions in media with anomalously small dispersion [J]. Soy. Phys. JETP, 1985, 61:963-966.
  • 2Boyd J. P., Weakly non-local solitons for capillary-gravity waves: fifth degree Kortewegde Vries equation [J]. Physica D, 1991, 48:129-146.
  • 3Cui S., Deng D. and Tao S., Global existence of solutions for the Cauchy problems of the Kawahara equation with L2 initial data [J]. Acta Math. Sinica (English Series), to appear.
  • 4Cui S. and Tao S., Strichartz estimates for dispersive equations and solvability of Cauchy problems of the Kawahara equation [J]. J. Math. Anal. Appl., 2005, 304:683-702.
  • 5Gorshkov K. A. and Papko V. V., The structure of solitary waves in media with anomalously small dispersion [J]. Soy. Phys. JETP, 1977, 46:92-96.
  • 6Grimshaw R. and Joshi N., Weakly nonlocal solitary waves in a singularly perturbed Kortweg-de Vries equation [J]. SIAM J. Appl. Math., 1995, 55:124-135.
  • 7Hunter J. K. and Scheurle J., Existence of perturbed solitary wave solutions to a modal equation for water waves [J]. Physica D, 1988, 32:253-268.
  • 8II'ichev A. T. and Semenov A. Yu., Stability of solitary waves in dispersive media described by a fifth order evolution equation [J]. Theor. Comput. Fluid Dynamics,1992, 3:307-326.
  • 9Karpman V. I. and Belashov V. Yu., Dynamics of two-dimensional solution in weakly dispersive media [J]. Phys. Lett. A., 1991, 154:131-139.
  • 10Kawahara T., Oscillatory solitary waves in dispersive media [J]. J. Phys. Soc. Japan,1972, 33:260-264.

同被引文献8

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部