Mahler型函数值的代数无关度量
Algebraic Independence Measure for the Values of Mahler Type Functions
摘要
利用初等的结式方法研究满足多项式形式的函数方程组的Mahler型函数的零点估计,给出了满足非线性函数方程组的Mahler型函数在代数点值的代效无关度量.
The paper gives an algebraic independence measure for the values of Mahler functions satisfying non-linear functional equations, where the arguments are algebraic numbers.
出处
《数学年刊(A辑)》
CSCD
北大核心
2006年第5期689-700,共12页
Chinese Annals of Mathematics
关键词
代数无关度量
零点估计
Mahler型函数
Algebraic independence measure, Zero order estimate, Mahler type function
参考文献17
-
1Galochkin A. O., Transcendence measures of values of functions satisfying certain functions [J]. Mat. Zametki, 1980, 27:175-183 (in Russian).
-
2Miller W., Transcendence measures by a method of Mahler [J]. J. Austral. Math. Soc.Set. A, 1982, 32:68-78.
-
3Molchanov S. M., Estimates for the Measure of Transcendence in the Mahler Method,Diophantine Approximations [M]. Moscow: Moskov. Gos. Univ., Mekh.-Mat. Fak.,1985: Part 1, 56-65 (in Russian).
-
4Becket P.-G., Transcendencd measures by Mahler's transcendence method [J]. Bull.Austral. Soc., 1986, 33:59-65.
-
5Nishioka K. and TSpfer Th., Transcendence measures and nonlinear functional equations of Mahler type [J]. Arch. Math., 1991, 57:370-378.
-
6Becket P. G., Effective measures for algebraic independence of the values of Mahler type functions [J]. Acta Arith., 1991, 58:239-250.
-
7Nishioka K., Mahler Functions and Transcendence [M]. Lecture Notes in Math. 1631,Berlin: Springer, 1996.
-
8Nishioka K., Measures of Algebraic Independence for Mahler Functions, Introduction to Algebraic Independence Theory [M]// Nesterenko Yu. V. and Philippon P. (eds.),Lecture Notes in Math. Vol. 1752, Berlin: Springer, 2001:187-197.
-
9Wass N. C., Algebraic independence of the values at algebraic points of a class of functions considered by Mahler [J]. Diss. Math., 1990, 303:1-61.
-
10Nesterenko Yu. V., Estimates for the orders of zeros of functions of a certain class and applications in the theory of transcendental numbers [J]. Izv. Akad. Nauk SSSR, Set.Mat., 1977, 41:253-284.Engl. Tansl. in Math. USSR-Izv., 1977, 11:239-270.
-
1王天芹.多变量Mahler型函数值的超越度量[J].数学学报(中文版),2009,52(2):217-228.
-
2徐广善,王天芹.Mahler型函数值代数无关性的p-adic度量[J].数学学报(中文版),2004,47(5):921-930.
-
3徐罕.Holder不等式的一个应用[J].纺织高校基础科学学报,1998,11(2):177-179.
-
4王天芹.Mahler函数值的代数无关性[J].纯粹数学与应用数学,2006,22(2):223-231.
-
5王天芹,徐广善.满足Mahler型代数函数方程的函数值的p-adic超越度量(英文)[J].数学进展,2006,35(4):463-475.
-
6金瑾.一类亚纯函数差分的零点估计[J].山西大同大学学报(自然科学版),2013,29(2):1-3.
-
7何婵,王能发.求解非线性方程组的一个光滑化一步牛顿算法[J].云南民族大学学报(自然科学版),2009,18(2):120-124. 被引量:2
-
8司建国,徐鹏云.一类非线性函数方程组的逼近解[J].深圳大学学报(理工版),1989,6(1):69-78.
-
9司建国.一类非齐次线性函数方程组解析解的存在性和唯一性[J].阜阳师范学院学报(自然科学版),1990(1):45-54.
-
10张子芳,付英贵,卢谦,彭煜.Rouche定理和多项式零点[J].西南科技大学学报,2002,17(4):71-73.