期刊文献+

多伪币问题的非适应解 被引量:1

Non-adaptive Solutions to the General Counterfeit Coin Problem
下载PDF
导出
摘要 Dyson(The Mathematical Gazette,1946,30:231-234)提出“伪币问题”以来,已有许多不同的版本和推广,并得到广泛研究.通过拓展Born等人(Discrete Applied Mathematics,1995,61:121~131)提出的Dyson集概念,为k伪币鉴别问题和k伪币查找问题的非适应解建立了一致的数学模型,为使用数学方法处理上述两个问题的非适应解提供了便利.利用上述模型,将伪币查找问题非适应算法的可查找组合数上界缩小了近一半,并给出了一个对任何k≥1都可用的称量次数上界. The counterfeit coin problem has been studied extensively by mathematicians and computer scientists ever since it was first raised out. Among various generalizations and variations of the original problem, the k- counterfeit-coin problem (where k is any positive integer, denoting the number of counterfeit coins presented) and its non-adaptive solutions are of interest. By extending the concept of "Dyson sets" proposed by Born etal (Discrete Applied Mathematics, 1995,61: 121- 131) , this paper gives mathematical models for non-adaptive solutions to two different versions of the k-counterfeit-coin problem (the "identification version" and the "search-only version", respectively), converting the solution-searching problem to a mere treatment of vectors. With new models given, the upper bound of the number of all possible combinations (from which a non-adaptive scheme of w weighings suffices to determine the combination of counterfeit coins) has been reduced almost by half. An inequality providing an upper bound of the number of weighings (sufficient to identify all of the k counterfeit coins out of n coins) for any given k and n is also presented.
作者 肖新攀
机构地区 双新研究所
出处 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第5期506-511,共6页 Journal of Nanjing University(Natural Science)
关键词 伪币问题 非适应性算法 组合搜索 r-独立Dyson集 弱独立Dyson集 the counterfeit coin problem, non-adaptive algorithms, combinatorial search, k-independent Dyson sets, weakly independent Dyson sets
  • 相关文献

参考文献3

二级参考文献11

  • 1[1]Aigner M. Combinatorial Search[M].New York: Wiley-Teuber,1988
  • 2[2]Du D Z, Hwang F K. Combinatorial Group Testing and its Applications[M]. World Scientific, Singapore,2000
  • 3[3]Bonis A De. A predetermined algorithm for detecting a counterfeit coin with a multi-arms balance[J]. Discrete Appl Math,1998;86:181-200
  • 4[4]Bonis A De, Gargano L, Vaccaro U. Optimal detection of a counterfeit coin with multi-arms balances[J]. Discrete Appl Math, 1995;61:121-131
  • 5[5]Guy P K, Nowakowski R J. Coin-weighing problems[J]. Amer Math Monthly, 1995;102:164-167
  • 6[6]Li A P. On the conjecture at two counterfeit coins[J]. Discrete Math,1994;133:301-306
  • 7[7]Liu W A, Nie Z K. Optimal detection of two counterfeit coins with two-arms balance[J]. Discrete Appl Math, to appear
  • 8[8]Tosic R. Three counterfeit coins[J]. Rev Res Sci Univ Novi Sad, 1985;15:225-233
  • 9[9]Tosic R. Five counterfeit coins[J]. J Statist Plann Inference, 1989;22:197-202
  • 10SraBaase.Computer Algorithms introduction to Design and Analysis[M].北京:高等教育出版社,2001..

共引文献3

同被引文献14

  • 1肖新攀.两类“称球问题”的统一非序列解[J].湘潭大学自然科学学报,2006,28(2):28-32. 被引量:2
  • 2L. Pyber.How to find many counterfeit coins?[J]. Graphs and Combinatorics . 1986 (1)
  • 3DYSON F J.The problem of the pennies. The Mathematical Gazette . 1946
  • 4AIGNER M.Combinatorial search. . 1988
  • 5BO■NJAK I.A new algorithm for the four counterfeit coins problem. Novi Sad J Math . 2002
  • 6LIU Wen-an,ZHANG Wei-guo,NIE Zan-kan.Searching for two counterfeit coins with two-arms balance. Disorete Appl.Math . 2005
  • 7BORN A,,HURKENS C A J,WOEGINGER G J.How to detect a counterfeit coin:Adaptive versus non-adaptive solutions. Information Processing Letters . 2003
  • 8Bellman R,Gluss B.On various versions of the defective coin problem. Information and Control . 1961
  • 9Bonis A D,Gargano L,Vaccaro U.Optimal detection of a counterfeit coin with multi-arms balances. Discrete Applied Mathematics . 1995
  • 10Bonis A De.A predetermined algorithm for detecting a counterfeit coin with a multi-arms balance. Discrete Applied Mathematics . 1998

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部