摘要
将(n+1)维S ine-Gordon方程行波约化,得到一个常微分方程。用未知函数的变换将此方程变换成新未知函数及其导数为变元的多项式型的非线性常微发方程。该常微分方程可用扩展的F展开法求解。利用齐次平衡原则和扩展的F展开法求出了(n+1)维S ine-Gordon方程的Jacob i椭圆函数表示的双周期行波解,在极限情况下可得孤立波解。
An ordinary differential equation(ODE) by seeking traveling wave solutions to(n+1)-dimensional Sine-Gordon equation is obtained.By a transformation of dependent variable,the ODE is converted into a nonlinear ordinary differential equation(NODE) of a polynomial type of new dependent variable and its derivatives.The NODE can be solved by the extended F-expansion.By using the homogeneous balance principle and the extended F-expansion method,the double periodic wave solutions expressed by Jacobi elliptic functions to the(n+1)-dimensional Sine-Gordon equation are obtained.In the limit condition,the solitary wave solutions can be obtained.
出处
《河南科技大学学报(自然科学版)》
CAS
2006年第5期86-89,共4页
Journal of Henan University of Science And Technology:Natural Science
基金
河南省教育厅自然科学基金项目(2006110002)
河南科技大学科研基金项目(2004ZD002
2004ZY040)