期刊文献+

具有空间连续行为的微型压力传感器系统级建模 被引量:1

Modeling of Capacitive Micro Pressure Sensor Featuring Space-Continuous Behavior
下载PDF
导出
摘要 大多数MEMS器件(如梁、膜等)的动态特性方程为偏微分方程,因此建立对应组件的可重用参数化行为模型是一个难题.本文通过有限差分法把偏微分方程转化为常微分方程组,然后采用混合信号硬件描述语言进行描述,解决了该问题.针对电容式微型压力传感器,专门考虑膜片的空间连续行为以及结构、静电力的耦合作用,建立了包含接口电路在内的系统模型,据此进行了动态行为仿真.通过结果对比,验证了方法的实用性.相对于通用的参数化组件模型,当前MEMS商业化软件多采用逐个器件进行宏模型抽取的方式实现系统级建模和仿真. A system-level modeling technique especially for space-continuous behavior is developed, inherently described using partial differential equations (PDEs). Finite differences method (FDM) is used for discretization of PDEs. In this way, PDEs can be reduced to ordinary differential equations (ODE) for modeling, which is currently directly supported in analog and mixed-signal hardware description languages (HDL). Using this method, the behavior equation of a capacitive micro pressure sensor is represented, then its reusable parameterized schematic-drive model is established coded by HDL (MAST). A capacitive pressure sensor system including read-out circuitry is modeled, so the entire multi-domain micro-system can be simulated by Saber simulator. The introduced behavior model is verified by comparing the simulation results with FEA method.
出处 《传感技术学报》 CAS CSCD 北大核心 2006年第05B期1840-1843,共4页 Chinese Journal of Sensors and Actuators
基金 国家自然科学基金资助(90305017) 航空基金资助(04I53074 03I53066)
关键词 偏微分方程 系统级建模 可重用参数化模型 电容式压力传感器 硬件描述语言 PDEs system level modeling reusable parameterized model Capacitive pressure sensor HDL
  • 相关文献

参考文献8

  • 1Teegarden D, Lorenz G, Neul R. How to Model and Simulate Mierogyroseope Systems[J]. IEEE Spectrum,1998,35(7):66-75.
  • 2Gabbay L D, Senturia S D. Computer-Aided Generation of Non-linear Reduced-Order Dynamic Macromodels. Ⅰ. Non-Stress-Stiffened Case[J]. Journal of Microelectromechanical Systems, 2000,9(2 ):262-269.
  • 3Pelz G, Bielefeld J, Zappe F J, Zimmer G. MEXEL: Simulation of Microsystems in a Circuit Simulator Using Automatic Electromechanical Modeling[ C]//Proc. of Micro System Technologies '94, Berlin, Germany, October 1994:651-657.
  • 4Nikitin P V, Shi C J R, Wan B. Modeling Partial Differential Equations in VHDL-AMS[C]//Proc. IEEE int. Syst. -on-Chip Symp. 2003: 1977-1981.
  • 5Voβkamper L M, Ludecke A, Leineweber M, et al. Electromechanical Modeling Beyond VHDL-AMS[C]// IEEE/ACM International Workshop on Behavioral Modeling and Simulation (BMAS '99), Orlando, Florida, USA, 1999.
  • 6Timoschenko S, Woinowsky-Krieger S. Theory of Plates and Shells[M]. McGraw-Hill Inc , 1959.
  • 7Lee K W, Wise K D. SENSIM: A Mimulation Program for Solid-State Pressure Sensors[J]. IEEE Transactions on Electron Devices, 1982,29(1):34-41.
  • 8Senturia S D, Harris R M, et al. A Computer-Aided Design System for Microelectromechanical Systems (MEMCAD) [J].IEEE Journal of Microelectromechnical systems. 1992,1 ( 1 ) :3-13.

同被引文献43

引证文献1

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部