摘要
利用DWY-1型电磁无损检测仪,采用改进的Gram-Schm idt方法优化的RBF(径向基函数网络)人工神经网络,实现了钢铁件淬火硬度的实时在线无损检测。结果表明,淬火硬度的检测精度、网络的收敛速度能满足生产实际的需要。
By means of the new type of electromagnetic nondestructive measurement instrument ( DWY-1 ) , using the RBF ( Radial Basis Function) neural network optimized by modified Gram-Schmidt method,the real-time on line non-destructive detect for hardness of steel parts was realized. The results show that the detect accuracy and the convergence rate of network can meet the requirement of practical production.
出处
《金属热处理》
EI
CAS
CSCD
北大核心
2006年第9期69-71,共3页
Heat Treatment of Metals
基金
江苏省高校自然科学研究指导性计划项目(04KJD470014)
江苏省高校高新技术产业发展指导性计划项目(JHZD04-046)
关键词
人工神经网络
在线检测
电磁无损检测
淬火硬度
artificial neural network (ANN)
online detecting
electromagnetic non-destructive test (EMNDT)
quenched hardness