期刊文献+

Markov链模型在蛋白质可溶性预测中的应用

Prediction of Protein Solvent Accessbility with Markov Chain Model
下载PDF
导出
摘要 利用M arkov链模型对蛋白质可溶性特性进行统计建模,按照蛋白质序列中残基的相对可溶性,将其分为两类(表面/内部)和三类(表面/中间/内部)进行预测。选择不同M CM阶数和分类阈值对数据进行训练和预测,以确保得到最好的分类效果。对两种数据集在不同分类阈值下进行分类预测,并将结果同其他已有方法如神经网络、信息论和支持向量机法等进行比较。该方法对蛋白质可溶性的预测精度和相关系数普遍好于或接近其他预测方法,其中对两类分类问题和三类分类问题的最优分类结果分别达到78.9%和67.7%。同时,该方法具有运算复杂度低、耗时短等优点。 Residues in protein sequences can be classified into two (exposed / buried) or three (exposed / intermediate / buried) states according to their relative solvent accessibility. Markov chain model (MCM) had been adopted for statistical modeling and prediction. Different orders of MCM and classification thresholds were explored to find the best parameters. Prediction results for two different data sets and different cut-off thresholds were evaluated and compared with some existing methods, such as neural network, information theory and support vector machine. The best prediction accuracies achieved by the MCM method were 78. 9% for the two-state prediction problem and 67.70% for the three-state prediction problem, respectively. A comprehensive comparison for all these results shows that the prediction accuracy and the correlative coefficient of the MCM method are better than or comparable to those obtained by the other prediction methods. At the same time, the advantage of this method is the lower computation complexity and better time-consuming performance.
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2006年第5期1109-1113,共5页 Journal of Biomedical Engineering
基金 中国科学技术大学知识创新工程重大项目
关键词 MARKOV链 蛋白质 可溶性 生物信息学 Morkov chain Protein Solvent accessbility Bioinformatics
  • 相关文献

参考文献13

  • 1Rost B. Prediction in 1D.. secondary structure, membrane helices, and accessibility. Structural Bioinformatics, New York: Wiley, 2003; 557
  • 2Ahmad S, Gromiha MM. NETASA: Neural network based prediction of solvent accessibility. Bioinformatics, 2002; 18: 819
  • 3Hossein NM, Mehdi S, Shahriar A, et al. Prediction of protein surface accessibility with information theory,PROTEINS: Structure, Function, and Genetics, 2001; 42 :452
  • 4Yuan Z, Burrage K, Mattick JS. Prediction of protein solvent accessibility using support vector machines. Proteins: Structure, Function, and Genetics, 2002; 48 : 566
  • 5Borodovsky M. , Mclninch JD, Koonin EV, et al. Detection of new genes in a bacterial genome using Markov models for three gene classes. Nucleic Acids Res,1995; 23 : 3554
  • 6Borodovsky M, Koonin EV, Rudd KE. New genes in old sequence: a strategy for finding genes in the bacterial genome.Trends Biochem Sci, 1994;19: 309
  • 7Krogh, A, Brown, M, Mian, IS, et al. Hidden Markov models in computational biology:Applications to protein modeling. J Mol Biol, 1994; 235 :1501
  • 8Chou KC. Prediction and classification of α-turn types.Biopolymers, 1997; 42 : 837
  • 9Yuan Z. Prediction of protein subcellular locations using Markov chain models. FEBS Letters, 1999; 451: 23
  • 10Hobohm U, Sander C. Enlarged representation set of protein structure. Protein Sci, 1994;3 : 522

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部