期刊文献+

基于PSO训练的NN-PID控制器设计及其FPGA实现 被引量:1

Design of NN-PID Controller Based on PSO and Its FPGA Implementation
下载PDF
导出
摘要 提出了一种基于PSO学习、VHDL描述和FPGA实现的NN-PID控制器设计方法。首先借助MATLAB系统仿真工具,在闭环控制系统中通过PSO优化算法训练前馈网络,得到优化的NN-PID控制器参数;然后在FPGA集成开发环境下进行控制器的VHDL层次化设计,重点研究单个神经元和前馈网络的结构以及实现方式;最后对该控制器进行了闭环时序测试,并在一个具体的FPGA器件上实现。研究结果表明,PSO用于NN-PID控制器训练速度快,VHDL描述和FPGA实现该控制器时序验证方便,而且控制器具有较好的鲁棒性。 In this paper, a design method of NN-PID controller based on PSO learning, VHDL description and FPGA implementation is proposed. At first, with the simulink of MATLAB, the feedforward neural networks went through training based on PSO in the closed-loop control system, and the optimized parameters of NN-PID are obtained. Then under FPGA' s development toolkit, a hierarchical design of the controller based on VHDL is carried out, emphasize on the research of single neuron as well as the structure and the realization methods of feedforward neural networks. At last the closed-loop test of the controller, implemented on a FPGA chip, is carried out. The research results indicated that NN-PID controller's training speed based on PSO is quick, the timing validation of the controller based on VHDL description and FPGA implementation is convenient and quality of controller is robust.
出处 《计算机应用研究》 CSCD 北大核心 2006年第11期143-145,共3页 Application Research of Computers
基金 国家自然科学基金资助项目(60474030)
关键词 PSO NN—PID VHDL FPGA PSO ( Particle Swarm Optimization) NN-PID VHDL FPGA
  • 相关文献

参考文献7

  • 1Dalay B. Accelerating System Performance Using SOPC Builder[ C].International Symposium on System-on-Chip,2003.3-5.
  • 2Gadea R,Cerda J,et al. Artificial Neural Network Implementation on a Single FPGA of a Pipelined On-line Backpropagation[ C]. The 13th International Symposium on System Synthesis,2000. 225-230.
  • 3Reay D S. CMAC and B-spline Neural Networks Applied to Switched Reluctance Motor Torque Estimation and Control[ C]. The 29th Annual Conference of the IEEE, IEEE IECON,2003. 2453- 2458.
  • 4Fan Yang,Paindavoine M. Implementation of an RBF Neural Network on Embedded Systems: Real-time Face Tracking and Identity Verification [ J ]. IEEE Trans. of Neural Networks, 2003,14 ( 5 ) : 1162-1175.
  • 5Yasuda K, Ide A, Iwasaki N. Adaptive Particle Swarm Optimization[ C]. IEEE International Conference on Systems, Man and Cybernetics,2003. 1554-1559.
  • 6Gudise V G, Venayagamoorthy G K. Comparison of Particle Swarm Optimization and Backpropagation as Training Algorithms for Neural Networks [ C ]. Proceedings of IEEE, IEEE SIS,2003.110-117.
  • 7ALTERA Corporation. Quartus Ⅱ version 4.0 Software[ EB/OL]. http://www, altera, com. cn/literature/manual/intro_to_quartus2, pdf,2004- 06.

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部