期刊文献+

功能梯度材料的裂纹分析及有限元计算(英文) 被引量:1

Crack analyses of functionally graded materials and finite element method calculation
下载PDF
导出
摘要 非均匀介质力学的早期研究最先始于密度及力学性质随深度变化的弹性波问题.此后,非均匀介质力学的研究便云集了广泛的研究者.本文,分析和计算了功能梯度材料的裂纹尖端场及应力强度因子.比较了均匀材料与非均匀材料裂纹尖端场,指出:材料梯度不影响裂纹尖端的奇异性阶次和角分布函数,但影响应力强度因子(SIF)值.作为断裂力学的重要参数,应力强度因子是材料梯度,外载荷及构件几何形状的函数.文中,假设材料的弹性摸量按具有不同系数的指数变化,使用有限元方法获得了裂纹尖端位移,然后使用外推法得到了功能梯度材料张开型断裂的应力强度因子. The earliest research on mechanics of non - homogenous medium is about the elastic wave ( the density and mechanical properties vary along the depth). Since that time, the mechanics research of non - homogeneous medium has been the focus of worldwide researchers. In this paper, both the crack - tip field of graded materials and the stress intensity factor are analyzed and calculated. And the crack - tip field between homogeneous and non -homogeneous materials is compared. It boils down to that the material gradients do not affect the order of singularity and the angular functions of the crack tip fields, but do affect the stress intensity factor. As the important factor of fracture mechanics, the SIF is function of material gradients, external loading and geometry. Commonly, the solution of SIF is calculated through displacement method and stress method. In this paper, the Young' s modulus is assumed as exponential variable, with different coefficient, the displacement of crack - tip is obtained first using FEM, and then the SIF of FGM opening mode fracture at the crack - tip is obtained using the extrapolating method.
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2006年第5期690-695,共6页 Journal of Natural Science of Heilongjiang University
基金 Supported by the National Natural Science Foundation of China(10272036)
关键词 功能梯度材料 有限元法 应力强度因子 外推法 functionally graded materials finite element method stress intensity factor extrapola ting method
  • 相关文献

参考文献13

  • 1KOIZUMI M,NIINO M.Overview of FGM research in Japan[J].Functionally Gradient Materials,MRS Bulletin,1995,20:19 -21.
  • 2HIRAI T.Functional gradient material in processing of ceramics,part 2[J].Materials Science and Technology,1996,17B:293-341.
  • 3PARAMESWARAN V,SHUKLA A.Asymptotic stress fields for stationary cracks along the gradient in functionally graded materials[J].Journal of Applied Mechanics (ASME),2002,69 (3):240-243.
  • 4WILLIAMS M L.The stress around a fault or crack in dissimilar media[J].Bulletin of the seismological Society of America,1959,49:199-204.
  • 5WILLIAMS M L.On the stress distribution at the base of a stationary crack[J].ASME Journal of Applied Mechanics,1957,24:109-114.
  • 6JIN Z H,NODA N.Crack -tip singular fields in non -homogeneous materials[J].ASME Journal of Applied Mechanics,1994,61 (3):738 -740.
  • 7NODA N,JIN Z H.Crack-tip singular fields in non-homogeneous body under thermal stress fields[J].JSME Int J Series A,1995,38 (3):364-369.
  • 8DELALE F,ERDOGAN F.The crack problem for a non -homogeneous plane[J].ASME J App Mech,1983,50:609.
  • 9DELALE F,ERDOGAN F.On the mechanical modeling of the interfacial region in bonded half-planes[J].ASME J App Mech,1988,55:317-324.
  • 10EWING W M.Elastic wave in layered media[M].New York:McGraw-Hill,1957.

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部