摘要
This paper describes a routing algorithm for risk scanning agents using ant colony algorithm in P2P(peerto peer) network. Every peer in the P2P network is capable of updating its routing table in a real-time way, which enables agents to dynamically and automatically select, according to current traffic condition of the network, the global optimal traversal path. An adjusting mechanism is given to adjust the routing table when peers join or leave. By means of exchanging pheromone intensity of part of paths, the algorithm provides agents with more choices as to which one to move and avoids prematurely reaching local optimal path. And parameters of the algorithm are determined by lots of simulation testing. And we also compare with other routing algorithms in unstructured P2P network in the end.
This paper describes a routing algorithm for risk scanning agents using ant colony algorithm in P2P(peerto peer) network. Every peer in the P2P network is capable of updating its routing table in a real-time way, which enables agents to dynamically and automatically select, according to current traffic condition of the network, the global optimal traversal path. An adjusting mechanism is given to adjust the routing table when peers join or leave. By means of exchanging pheromone intensity of part of paths, the algorithm provides agents with more choices as to which one to move and avoids prematurely reaching local optimal path. And parameters of the algorithm are determined by lots of simulation testing. And we also compare with other routing algorithms in unstructured P2P network in the end.
基金
Supported by the National Natural Science Foun-dation of China (60403027)
Natural Science Foundation of HubeiProvince (2005ABA258)
the Opening Foundation of State KeyLaboratory of Software Engineering (SKLSE05-07)