期刊文献+

异常检测模式中的持续学习研究

Research on continuous learning of anomaly detection pattern
下载PDF
导出
摘要 提出了阶段化学习的概念,分阶段学习区分出了模式的完备性和不完备性。基于此概念,提出一种新的异常检测模式持续学习算法(PADPL)。仿真结果显示,PADPL能够满足由不完备性引起的异常检测模式持续学习的要求。 The concept of phase learning was proposed, and it could be used to determine whether a learning mode was complete or not. Then, a Phases Anomaly Detection Pattern Learning algorithm, PADPL, was put forward. Simulation shows that PADPL could meet the requirements of phases anomaly detection pattern learning which were caused by uncompleted learning mode.
作者 郭莉 王坤
出处 《计算机应用》 CSCD 北大核心 2006年第11期2615-2617,共3页 journal of Computer Applications
关键词 异常检测 持续学习 阶段化学习 anomaly detection continuous learning phases learning
  • 相关文献

参考文献6

  • 1SCHLIMMER JC. Concept acquisition through representational adjustment [D]. University of California, Irvine, 1987.
  • 2THRUN S, SULLIVAN JO. Discovering structure in multiple learning Tasks: The TC Algorithm[ A]. SAITTA L. Proceedings of the 13th International Conference on Machine Learning[ C]. San Mateo,CA: Morgan Kaufmann, 1996.
  • 3LANE TD. Machine learning techniques for the computer security domain of anomaly detection[ D]. Purdue University, 2000.
  • 4RING M. Learning sequential tasks by incrementally adding higher orders[ A]. HANSON SJ, GILES CL, COWAN JD, ed. Advances in Neural Information Processing Systems[ C]. Morgan Kaufmann,1993.115 - 122.
  • 5KDD Cup 1999 Data[ EB/OL|. http://kdd.ics. uci. edu/, 2006.
  • 6QUINLAN JR. C4.5: Programs for Machine Learning[ M]. San Mateo, CA: Morgan Kaufmann, 1993.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部