期刊文献+

水产养殖动物遗传连锁图谱及QTL定位研究进展 被引量:17

Advancements in Genetic Linkage Maps and Quantitative Trait Locations of Aquatic Farming Animals
下载PDF
导出
摘要 自1997年美国农业部启动5种水产养殖动物基因组计划以来,在不到10年的时间里,世界各国都相继开展了本国主要水产养殖动物基因组研究。截至2005年底,有近17种海淡水养殖动物公布了遗传连锁图谱:属于高密度连锁图谱的有虹鳟和大西洋鲑(标记数超过1000);属于中密度遗传连锁图谱的有罗非鱼、沟鲶、黑虎虾、日本牙鲆和欧洲海鲈(标记数为400—1000);属于低密度遗传连锁图谱的有泰国的胡鲶,中国的栉孔扇贝、鲤鱼,日本的黄尾,美国的牡蛎等近10种养殖种类(标记数少于400)。水产养殖动物遗传连锁图谱的构建和发展,促进了一些与经济性状(如生长、抗逆、发育等)相关的数量性状位点(QTL)的定位研究。然而,QTL定位研究目前只在具有中高密度遗传连锁图谱的鲑科鱼类(虹鳟、大西洋鲑和北极嘉鱼)、罗非鱼、沟鲶和日本牙鲆等种类中开展,而且定位研究仍处在初级水平。遗传连锁图谱的高分辨率和QTL在图谱上的精确定位,是今后能否实现对主要水产养殖动物的经济性状进行遗传操作的技术保证,同时也是实现分子标记或基因辅助育种在水产养殖动物中成功运用的制胜法宝。 Many countries have launched genomic studies for aquatic fanning animals since the Agriculture Ministry of America initiated genomic studies for five kinds of aquatic fanning animals in 1997. At the end of 2005, genetic linkage maps of approximately 17 briny or limnetic fanning animals have been published. Of these 17 species, the rainbow trout and the Atlantic salmon have high-density linkage maps with over 1 000 markers, the tilapia, the channel catfish, the black tiger shrimp, the Japanese flounder and the European sea bass have middle-density linkage maps with 400- 1 000 markers; the remaining 10 species, including the Thailand walking catfish, the Chinese Zhikong scallop, the common carp, the Japanese yellowtail amberjack and the American oyster, have low-density linkage maps with less than 400 markers. The framework and development of genetic linkage maps of aquatic fanning animals facilitated QTL mapping associated with interesting economic traits, such as growth, resistance and development. However, QTL mapping was only studied preliminarily in a few species with middle or high density linkage maps, such as salmonids (the rainbow trout, the Atlantic salmon and the Arctic char), the tilapia, the channel catfish and the Japanese flounder. Genetic linkage maps with higher resolution and fine QTLs mapping are the keys to implementing genetic technology in interesting economic traits and also have the power to successfully carry out molecular marker or gene assistant selection breeding in aquatic fanning animals.
出处 《Zoological Research》 CAS CSCD 北大核心 2006年第5期533-540,共8页 动物学研究(英文)
基金 国家"973"计划(2004CB117405)
关键词 模式水产动物 养殖水产动物 遗传连锁图谱 QTL定位 Aquatic model animals Aquatic fanning animals Genetic linkage map QTL mapping
  • 相关文献

参考文献56

  • 1Agresti JJ, Seki S, Cnaani A, Poompuang S, Hallerman EM, Umiel N, Hulata G, Gall GAE, May B. 2000. Breeding new strains of tilapia: Development of an artificial center of origin and linkage map based on AFLP and microsatellite loci [J], Aquaculture, 185:43 -56.
  • 2常玉梅,李绍戊,梁利群,孙效文.微卫星标记的制备策略[J].中国生物工程杂志,2005,25(B04):210-214. 被引量:10
  • 3Chistiakov DA, Hellemans B, Haley CS, Law AS, Tsigenopoulos CS, Kotoulas G, Bertotto D, Libertini A, Volckaert FAM. 2005. A Microsatellite linkage map of the European sea bass Dicentrarchus labrax L [J]. Genetics, 170:1821 - 1826.
  • 4Clark MS. 2003. Genomics and mapping of teleostei (bony fish) [ J]. Comp Fun Genom, 4: 182- 193.
  • 5Cnaani A, Hallerman EM, Ron M, Weller Ji, indelman M, Kashi Y, Gall GAE, Hulata G. 2003. Detection of a chromosomal region with two quantitative trait loci, affecting cold tolerance and fish size, in an F2 tilapia hybrid [J]. Aquaculture, 223:117 - 128.
  • 6Coimbra MRM, Kobayashi K, Koretsugu S, Hasegawa O, Ohara E, Ozaki A, Sakamoto T, Naruse K, Okamoto N. 2003. A genetic linkage map of the Japanese flounder, Paralichthys olivaceus [J ]. Aquaculture, 220:203-218.
  • 7Colosimo PF, Peichel CL, Nereng K, Blackman BK, Shapiro MD, Schluter D, Kingsley DM. 2004. The genetic architecture of parallel armor plate reduction in threespine stickleback [J]. PLoS Biology, 2 (5): 0635-0641.
  • 8Danzmann RG, Jackson TR, Ferguson MM. 1999. Epistasis in allelic expression at upper temperature tolerance QTL in rainbow trout [J]. Aquaculture, 173:45 - 5.
  • 9Fuji K, Kobayashi K, Hasegawa O, Coimbra MRM, Sakamoto T, Okamoto N. 2005. Identification of a single major genetic locus controlling the resistance to lymphocystis disease in Japanese flounder ( Paralichthys olivaceus) [J]. Aquaculture, 254:203 - 210.
  • 10Giibey J, Verspoor E, McLay A, Houlihan D. 2004. A microsatellite linkage map for Atlantic salmon ( Salmo salar ) [ J ]. Anim Genet , 35: 98- 105.

二级参考文献39

  • 1林鸿宣,钱惠荣,熊振民,闵绍楷,郑康乐.几个水稻品种抽穗期主效基因与微效基因的定位研究[J].Acta Genetica Sinica,1996,23(3):205-213. 被引量:34
  • 2吴为人,李维明,卢浩然.基于最小二乘估计的数量性状基因座的复合区间定位法[J].福建农业大学学报,1996,25(4):394-399. 被引量:25
  • 3李维明,吴为人,卢浩然,A.J.Worland,C.N.Law.小麦7D染色体数量性状基因定位和效应估计的研究[J].作物学报,1996,22(6):641-645. 被引量:13
  • 4Liang L Q, Chang Y M, Dong C Z. Genetic Analysis for Heilongjiang Coregonus usssruensis Population. See(In) : Wang YL.Sustainable Aquaculture-Resources, Environment and Quality, Forum on Fishery Science and Technology, Beijing, 2003. Beijing: Ocean Press, 2004.18 - 22.
  • 5Patrick H D, Elisabeth A. Isolation of microsatellite loci in Sceloporus grammicus (Squamata, Phrynosomatldae) . American Journal of Undergraduate Research, 2004, 2(4):1 - 12.
  • 6Lunt D H, Hutchinson W F, Carvalho G R. An efficient method for PCR-based isolation of microsatellite arrays ( PIMA). Molecular Ecology, 1999, 8:891 - 894.
  • 7Hanfling B, Weetman D. Characterization of microsatellite loci for the Chinese mitten crab, Eriocheir sinensis. Mol Ecol Notes,2003, 3 (1): 15-17.
  • 8Beheregaray L B, Sunnucks P, Alpers D L, et al. A set of microsatellite loci for the hairy-nosed wombats( Lasiorhinus krefftiiand L latifrons ). Conservation Genetics, 2000, 1 : 89 - 92.
  • 9Carleton K L, Streelman J T, Lee B Y, et al. Rapid isolation of CA microsatellites from the tilapia genome. Animal Genetics,2002, 33 : 140 - 144.
  • 10Oumesh K R, Alan E P, Ibrokhim A, et al. New dinucleotide and trinucleotide microsatellite marker resources for cotton genome research. The Journal of Conon Science, 2001, 5:103 - 113.

共引文献58

同被引文献379

引证文献17

二级引证文献157

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部