期刊文献+

一种基于分类矢量量化器的小目标红外图像压缩方法

A Small Target Infrared Image Compression Scheme Based on CVQ
下载PDF
导出
摘要 本文提出了一种基于分类矢量量化器的小目标红外图像的压缩方法。首先利用图像子块的平均灰度与纹理能量这两个参数将图像划分为背景区域与感兴趣区域,然后分别对两类区域的子块进行码书设计,用相对较多的码字描述感兴趣区域,用相对较少的码字描述背景区域,这样既达到了较高的压缩比,同时又较好的保留了感兴趣区域的信息,并且编码计算量有大幅度的下降。文中对分类矢量量化器对于减小编码计算量的作用进行了理论分析。实验结果表明在相同码书尺寸的情况下本算法比直接矢量量化方法更好地保留了红外图像中的小目标信息,并且加快了编码速度。 This paper presents a small target infrared image compression scheme based on classified vector quantization. Firstly mean gray value and texture energy are employed as two features to classify all blocks into two types:regions of interest and regions of background. Then sub-codebooks are designed respectively according to the classification, so that bits are allocated preferentially to preserve those spatial regions in the image that have the high probability of being targets. Thus high compression ratios are reached while preserving information of interest. This paper also analyses the reduction of encoding computation of classified VQ comparing with direct YQ. Experiment results show that this compression scheme can preserve the small target information in infrared image better than direct VQ,and remarkably speed up the encoding process.
作者 汪洋 卢焕章
出处 《信号处理》 CSCD 北大核心 2006年第5期630-634,共5页 Journal of Signal Processing
关键词 分类矢量量化 小目标红外图像 图像压缩 感兴趣区域 纹理能量 classified vector quantization small target infrared image image compression region of interest texture energy
  • 相关文献

参考文献6

  • 1Jin-Woo Nahm, Mark J. T. Smith. Very low bit rate compression using a quality measure based on target detection performance [ A ]. In: Kadar Ivan, Flushing, Libby Vibeke.Proceedings of Proceedings of SPIE Conference on Signal Processing, Sensor Fusion, and Target Recognition IV [ C ].Atlanta, GA, USA : SPIE, 1995. 246-255.
  • 2Yee-Wen Chen, Liang-Gee Chen, Mei-Juan Chen. A very low bit rate video coding system using adaptive regionclassified vector quantization [ A ]. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing 1996 [ C ]. Atlanta, GA, USA: IEEE, 1996.1205-1208.
  • 3欧阳星明,章国良,刘爱东.基于航迹融合的红外图像实时编码模型[J].计算机工程与应用,2004,40(10):55-56. 被引量:1
  • 4郑昌文,周成平,丁明跃.基于自适应匹配的红外图像分形编码[J].华中科技大学学报(自然科学版),2001,29(9):90-92. 被引量:4
  • 5Ramamurthi B, Gersho A. Classified Vector Quantization of Images[ J]. IEEE Transactions on Communications. 1986,34(11) :1105-1115.
  • 6孙圣和,陆哲明,刘春和.快速最近邻矢量量化码字搜索算法[J].电子学报,2001,29(z1):1772-1777. 被引量:3

二级参考文献33

  • 1皮明红,彭嘉雄.四级邻域匹配分形近似编码[J].华中理工大学学报,1997,25(2):32-34. 被引量:2
  • 2[6]Pan J S,Mclnnes F R,Jack M A.Bound for minkowski metric or quadratic metric applied to VQ codeword search [J].IEE Proceedings-Vision,Image and Signal Processing,1996,143(1) :67-71.
  • 3[7]Orchard M T.A fast nearest neighbor search algorithm [A].International Conference on ASSP [C],1991:2297-2300.
  • 4[8]Vidal E.An algorithm for finding nearest neighbors in (approximately)constant average time [J].Pattern Recognition Letters,1986,54:145-157.
  • 5[9]Li W,Salari E.A fast vector quantization encoding method for image compression [J].IEEE Transactions on Circuits and Systems for Video Technology,1995,5(2):119-123.
  • 6[11]Guan L,Kamel M.Equal-average hyperplane partitioning method for vector quantization of image data [J].Pattern Recognition Letters,1992:693-699.
  • 7[12]Pan J S,Huang K C.A new vector quantization image coding algorithm based on the extension of the bound for minkowski metric [J].PatternRecognition,1998,31(11):1757-1760.
  • 8[13]Lee C H,Chen L H.Fast closest codeword search algorithm for vector quantization [J].IEE Processings-Vision,Image and Signal Processing,1994,141(3):143-148.
  • 9[14]Ghosh D,Shivaprasad A P.Fast codeword search algorithm for realtime codebonk generation in adaptive VQ [J].IEE Processings-Vision,Image and Signal Processing,1994,144(5) :278-284.
  • 10[15]Baek S J,Jeon B K,Sung K M.A fast encoding algorithm for vector quantization [J].IEEE Signal Processing Letters,1997,4 (12):325-327.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部