期刊文献+

UKF训练RMLP网络的快速算法

A Fast Unscented Kalman Filter in Training RMLP Networks
下载PDF
导出
摘要 UKF训练PMLP的优点是无需计算动态偏导数,但UKF面临计算量大的问题,降低计算量是UKF的研究重点之一。本文提出反向遍历sigma点的方法,可以显著降低UKF有2N_w+1或N_w+2个sigma点两种情况下的计算量。另外,对2N_w+1个sigma点的情况,本文提出解耦合方法,能有效降低存储协方差阵所需空间。综合反向遍历方法和解耦合方法,本文给出UKF训练RMLP的快速算法。在动态系统辨识的仿真中,本文方法节省近80%的计算量和近90%的存储空间。 As a derivative-free learning method of RMLP networks, unscented Kalman filter(UKF) faces the difficulty of heavy calculation. In this paper, the reverse scan of sigma-points is firstly proposed. It takes the advantage of the layered structure of RMLP and the particularity of sigma-points, and efficiently reduces the calculation quantum whenever UKF has 2Nw + 1 or Nw + 2 sigma-points. The decoupling method is secondly proposed, which lowers the storing space when UKF has 2Nw + 1 sigma-points. Combining these two methods, a final fast UKF is achieved for training RMLP. In dynamic system identification simulations ,our method saves almost 80% learning time and 90% storing space.
出处 《信号处理》 CSCD 北大核心 2006年第5期653-657,共5页 Journal of Signal Processing
关键词 Unscented KALMAN Filter(UKF) Decoupled EXTENDED KALMAN Filter(DEKF) 反馈多层感知网络(RMLP) 动态系统辨识 Unscented Kalman Filter(UKF) Decoupled Extended Kalman Filter(DEKF) Recurrent MLP(RMLP) Dynamic System Identification
  • 相关文献

参考文献11

  • 1E. A. Wan and R. van der Merwe," The unscented Kalman filter," in Kalman Filtering and Neural Networks, Edited by S. Haykin. John Wiley and Sons ,Inc. ,2001.
  • 2J. Choi, T. H. Yeap and M. Bouchard, "Nonlinear State-Space Modeling using Recurrent Muhilayer Perceptions with Unscented Kalman Filter", Proceedings of IEEE International Conference on Systems, Man and Cybernetics( SMC 2004) , The Hague, Netherlands, October 2004.
  • 3Rudolph van der Merwe and Eric A. Wan. "Efficient Derivative-Free Kalman Filters for Online Learning," ES-ANN'2001 proceedings-European Symposium on Artificial Neural Networks Bruges(Belgium) ,25-27 April 2001, pp.205-210.
  • 4Rudolph Van Merwe, Amaud Doucet, Nando de Freitas,Eric Wan. "The Unscented Particle Filter, "Technical Report CUED/F-INFENG/TR 380, Cambridge University Engineering Department, August 2000.
  • 5E. A. Wan and R. van der Merwe," The Unscented Kalman Filter for Nonlinear Estimation, "in Proc. of IEEE Symposium 2000 ( AS-SPCC ), Lake Louise, Alberta, Canada, Oct.2000.
  • 6R. van der Merwe and E. A. Wan," THE SQUARE-ROOT UNSCENTED KALMAN FILTER FOR STATE AND PARAMETER-ESTIMATION," in Proceedings of Internation-al Conference on Acoustics, Speech, and Signal Processing, Salt Lake City, UT, May 2001.
  • 7SIMON J. JULIER, AND JEFFREY K. UHLMANN. "Unscented Filtering and Nonlinear Estimation," PROCEED-INGS OF THE IEEE, VOL. 92, NO. 3, MARCH 2004. pp :401-422.
  • 8James C. Spall" An Overview of the Simultaneous Perturbation Method for Efficient optimization," JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 19, NUMBER 4(1998). pp :482-492.
  • 9G. V. Puskorius. L. A. Feldkamp. 1992. " Recurrent Network Training with the Decoupled Extended Kalman Filter Algorithm," SPIE Vol. 1710. Science of Artificial Neural Networks. PP :461-473.
  • 10Mexander G. Parlos ,Sunil K. Menon,Amir F. Atiya. 2001."An Mgorithmic Approach to Adaptive State Filtering Using Recurrent Neural Networks," IEEE Trans on Neural Networks. Vol. 12. No. 6. November. pp:1411-1432.

二级参考文献7

  • 1Alexander G. Parlos, Sunil K. Menon, Amir E Atiya. 2001. An Algorithmic Approach to Adaptive State Filtering Using Recurrent Neural Networks. IEEE Trans on Neural Networks.Vol.12.No.6. November.pp: 1411-1432.
  • 2Gintaras V. Puskorius. Lee. A. Fcldkamp. 1994. Ncuralcontrol of Nonlinear Dynamical Systems with Kalman Filter Trained Recurrent Networks. IEEE Trans on Neural Networks. Vol.5,No.2.March.pp:279-297.
  • 3G.V. Puskorius. L.A.Feldkamp. 1992. Recurrent Network Training with the Decoupled Extended Kalman Filter Algorithm. SPIE Vol.1710.Science of Artificial Neural Networks.PP:461-473.
  • 4A.G. Parlos. O.T.Rais. A.EAtiya. 2000. Muff-step-ahead prediction using dynamic recurrent neural networks.Neural Networks. 13.PP:765-786.
  • 5Alexander G.Parlos, Kil T. Chong, Amir E Atiya, 1994. Application of the Recurrent Mulitlayer Perceptron in Modeling Complex Process Dynamics. IEEE Trans on Neural Networks. Vol.5, No.2, March. PP:255-265.
  • 6Simon Haykin. NEURAL NETWORKS A Comprehensive Foundation Second Edition. Prentice Hall. Page 12-15.
  • 7Amir EAtiya, Alexander G.Parlos. New Results on Recurrent Network Training: Unifying the Algorithm and Accelerating Convergence. IEEE Trans on Neural Networks. Voll, No.3, May 2000 PP:697-709.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部