期刊文献+

选择用于平台罗经故障检测的神经网络结构的方法 被引量:2

Model Selection in Neural Networks for Stabilized Gyrocompass Failure Detection
下载PDF
导出
摘要 在基于神经网络的平台罗经故障检测中,为了提高故障检测的灵敏度,要求神经网络拟合平台罗经动态系统时均方预测误差的均值及其标准差均小。影响神经网络对系统拟合精度的因素既有隐层节点数也有输入延迟数。本文以均方预测误差的均值和标准差共同作为评价神经网络逼近平台罗经动态系统性能的指标,并借用系统化交叉证实法的结构,且增加一个外循环用以同时选择输入延迟数,构建选择用于平台罗经故障检测的神经网络结构的方法。 In some applications of neural networks, such as stabilized gyrocompass failure detection based on neural networks, in order to promote the failure detection sensitivity, both the average and the standard deviation of mean squared prediction errors are needed to be small. The precision approximation to the stabilized gyrocompass by the neural networks is influenced by the number of both hidden nodes and input delays. So that, instead of only the average of prediction errors, both the average and the standard deviation of mean squared prediction errors should be used as criteria to select not only the number of hidden nodes but also the number of input delays as well simultaneously. Making use of the framework of cross validation, such a strategy of model selection in neural networks was designed in this article.
出处 《信号处理》 CSCD 北大核心 2006年第5期733-736,共4页 Journal of Signal Processing
关键词 神经网络 在线状态估计器 输入延迟 隐层节点 预测误差 均值 标准差 Neural networks Online state estimator Input delay Hidden node Prediction errors Average standard deviation
  • 相关文献

参考文献7

  • 1Napolitano M R, Neppach C, Casdorph V, et al. Neural-Network-Based scheme for sensor failure detection, identification, and accommodation [ J ]. Journal of Guidance,Control, and Dynamics, 1995,18 (6) : 1280 - 1286.
  • 2Homik K,Stinchcombe M ,White H. Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks [ J ]. Neural Networks, 1990,3(3) :551-560.
  • 3Elsken T. Even on finite test sets smaller nets may perform better[ J ]. Neural Networks, 1997,10 (2) :369 - 385.
  • 4Nguyen,D. Widrow, B. Improving the Learning Speed of 2-Layer Neural Networks by Choosing Initial Values of the Adaptive Weights ,Proceedings of the International Joint Conference on Neural Networks, 1990, ( IJCNN' 90), III-21-26.
  • 5Russell R. Pruning algorithms.-a survey[ J]. IEEE Transaction on Neural Networks, 1993,4 (5) :740 -747.
  • 6Syozo Y. Convergence suppression and divergence facilitation: minimum and joint use of hidden units by multiple outputs [J]. Neural Networks, 1997,10 (2) :353 - 367.
  • 7Anders U, Korn O. Model selection in neural networks [ J ].Neural Networks, 1999,12 (2) :309 - 323.

同被引文献6

  • 1凌霄汉,吉根林.一种快速选择性神经网络集成方法[J].郑州大学学报(理学版),2006,38(4):69-73. 被引量:2
  • 2Ren Da, Failure Detection of Dynamical Systems with the State Chi-Square Test [ J ]. Journal of Guidance, Control, and Dynamics. 1994,17 (2) : 271-277.
  • 3Napolitano M R, Neppach C, Casdorph V, et al. Neural- Network-Based scheme for sensor failure detection,identification, and accommodation [ J ]. Journal of Guidance, Control, and Dynamics, 1995,18 (6) : 1280 - 1286.
  • 4Napolitano M R, Windon D AII, Casanova J L. Kalman filters and neural-network schemes for sensor validation in flight control systems [ J ]. IEEE Transactions on Control Systems Technology, 1998,6 ( 5 ) : 596- 611.
  • 5Frank P M. Residual evaluation for fault diagnosis based on adaptive fuzzy thresholds [ A ]. lEE Colloquium on Qualitative and Quantitative Modeling for Fault Diagnosis [ C ]. London, UK. INSPEC Accession Number: 4974026,1995. 4/1-4/11.
  • 6Raza H, Ioannou P, Youssef H M. Surface failure detection for F/A-18 aircraft using neural networks and fuzzy logic [ A ]. IEEE World Congress on Computational Intelligence, IEEE International Conference on Neural Networks [ C ]. Orlando, FL, USA. INSPEC Accession Number: 4917461,1994,5:3363-3368.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部