期刊文献+

利用Alopex改进的粒子群优化算法及其在软测量建模中的应用 被引量:2

Improved Particle Swarm Optimization Algorithms by Alopex and Its Application in Soft Sensor Modeling
下载PDF
导出
摘要 提出了一种利用A lopex算法改进的粒子群优化算法,并将其应用于神经网络的建模中。改进的粒子群优化算法改善了粒子群优化算法摆脱局部极小点的能力,对典型函数的测试和基于神经网络的软测量建模表明:改进算法的全局搜索能力有了显著提高,特别是对多峰函数能够有效地避免早熟收敛问题。 Particle swarm optimization is a simple stochastic global optimization technique. Its significant feature is simpler expression and less parameters, but it is easily slumped local minima. A particle swarm optimization algorithm improved by Alopex is brought forward. The proposed algorithm sustains diversity in population efficiently and improves the ability of breaking away from local minima. At last the improved algorithm is used to model the soft sensor based on artificial neural networks. The experiment results demonstrate that the proposed algorithm is superior to the original particle swarm optimization algorithm, especially multi-apices function.
出处 《华东理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第9期1104-1108,共5页 Journal of East China University of Science and Technology
基金 国家973计划(2002CB3122000) 上海科委科技攻关项目(04DZ11010) "十五"国家高技术研究发展(863)计划项目(2003AA412010) 上海市优秀学科带头人计划
关键词 粒子群优化算法 ALOPEX 种群多样性 软测量 神经网络 particle swarm optimization Alopex population diversity soft sensor neural networks
  • 相关文献

参考文献7

  • 1Kennedy J,Eberhart R.Particle swarm optimization[A].Proc of IEEE International Conference on Neural Networks[C].Perth,Australia:IEEE Service Center,1995.1942-1948.
  • 2Eberhart R,Kennedy J.A new optimizer using particle swarm theory[A].Proc of the 6th International Symposium on Micro Machine and Human Science[C].Nagoya,Japan:IEEE Service Center,1995.39-43.
  • 3Shi Y,Eberhart R.A modified particle swarm optimization[A].Proc of IEEE World Congress on Computational Intelligence[C].Anchorage,USA:IEEE Service Center,1998.69-73.
  • 4Clere M.The swarm and the queen:Towards a deterministic and adaptive particle swarm optimization[A].Proc of the Congress on Evolutionary Computation[C].Washington,USA:IEEE Service Center,1999.1951-1957.
  • 5Shi Y,Eberhart R C.Fuzzy adaptive particle swarm optimization[A].Proc of the Congress on Evolutionary Computation[C].Seoul,Korea:IEEE Service Center,Piscataway,NJ,2001.101-106.
  • 6乔长阁,高德远.一种随机并行算法及其在VLSI布图中的应用[J].西北工业大学学报,1994,12(1):74-78. 被引量:6
  • 7周明 孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,1996..

二级参考文献2

  • 1薛宏熙,数字系统计算机辅助设计,1990年
  • 2Chu Pong P,感光科学与光化学

共引文献76

同被引文献23

  • 1张兵,陈德钊,饶骏.优进策略支持的进化规划估计反应动力学参数[J].高校化学工程学报,2004,18(5):638-642. 被引量:5
  • 2刘波,王凌,金以慧.差分进化算法研究进展[J].控制与决策,2007,22(7):721-729. 被引量:291
  • 3倪庆剑,邢汉承,张志政,王蓁蓁,文巨峰.粒子群优化算法研究进展[J].模式识别与人工智能,2007,20(3):349-357. 被引量:70
  • 4Holland J H. Adaptation in Natural and Artificial Systems. Ann Arbor, USA: University of Michigan Press, 1975.
  • 5Kennedy J, Eberhart R. Particle Swarm Optimization//Proc of the IEEE International Conference on Neural Networks. Perth, Australia, 1995:1942-1948.
  • 6Storn R. Differential Evolution Design of an IIR Filter//Proc of the IEEE International Conference on Evolutionary Computation. Nagoya, Japan, 1996 : 268 -273.
  • 7Elbehagi E, Hegazy T, Grierson D. Comparison among Five Evolutionary-Based Optimization Algorithm. Advanced Engineering Informatics, 2005, 19(1 ): 43-53.
  • 8Coello C A C. Theoretical and Numerical Constraint-Handling Techniques Used with Evolutionary Algorithms: A Survey of the State of the Art. Computer Methods in Applied Mechanics and Engineering, 2002, 191(11/12) : 1245 -1287.
  • 9Bia A. Alopex-B: A New, Simpler, But Yet Faster Version of the Alopex Training Algorithm. International Journal of Neural Systems, 2001, 11(6) : 497 -507.
  • 10Li Ruokang, Savage P E, Szmukler D. 2-Chlorophenol Oxidation in Supercritical Water: Global Kinetics and Reaction Products. AICbE Journal, 1993, 39( 1 ) : 178 - 187.

引证文献2

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部