摘要
提出了一种利用A lopex算法改进的粒子群优化算法,并将其应用于神经网络的建模中。改进的粒子群优化算法改善了粒子群优化算法摆脱局部极小点的能力,对典型函数的测试和基于神经网络的软测量建模表明:改进算法的全局搜索能力有了显著提高,特别是对多峰函数能够有效地避免早熟收敛问题。
Particle swarm optimization is a simple stochastic global optimization technique. Its significant feature is simpler expression and less parameters, but it is easily slumped local minima. A particle swarm optimization algorithm improved by Alopex is brought forward. The proposed algorithm sustains diversity in population efficiently and improves the ability of breaking away from local minima. At last the improved algorithm is used to model the soft sensor based on artificial neural networks. The experiment results demonstrate that the proposed algorithm is superior to the original particle swarm optimization algorithm, especially multi-apices function.
出处
《华东理工大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2006年第9期1104-1108,共5页
Journal of East China University of Science and Technology
基金
国家973计划(2002CB3122000)
上海科委科技攻关项目(04DZ11010)
"十五"国家高技术研究发展(863)计划项目(2003AA412010)
上海市优秀学科带头人计划