期刊文献+

非均匀演化算法及其应用 被引量:5

Evolutionary Algorithm with Non-Uniform Mutation and Its Applications
下载PDF
导出
摘要 提出一种基于非均匀变异的演化算法模型;基于随机过程理论分析了该算法的自适应性,用该算法求解了实际的“油层结垢”问题;基于随机优化领域经典的高维多峰测试函数,同已有的同类算法做了对比.实验结果表明:在没有引入任何额外参数和计算的前提下,该算法具有更好的收敛性和稳定性. An adaptive evolutionary algorithm (EA) is proposed based on the non-uniform mutation. Why it has adaptability is theoretically analyzed. Then the proposed algorithm is applied to the realistic "deposited oil layers" question. Finally, further comparisons with other similar EAs are made based on some high dimensional and multimodal functions, which prove the superiority over other EAs. The better performance of the adaptive EA is obtained without introducing any extra computing and parameters.
作者 赵新超
出处 《计算机学报》 EI CSCD 北大核心 2006年第10期1856-1861,共6页 Chinese Journal of Computers
关键词 演化算法 智能计算 非均匀变异 油层结垢 evolutionary algorithm intelligent computing non-uniform mutation deposited oil layers
  • 相关文献

参考文献11

  • 1Holland J.H..Adaptation in Nature and Artificial Systems.Ann Arbor:University of Michigan Press,1975
  • 2Schwefel H.P..Numerical Optimization of Computer Models.New York:Wiley,1977
  • 3刘静,钟伟才,刘芳,焦李成.组织进化数值优化算法[J].计算机学报,2004,27(2):157-167. 被引量:19
  • 4Zhao Xin-Chao,Gao Xiao-Shan.Affinity genetic algorithm.Journal of Heuristics,to appear
  • 5杨辉,康立山,陈毓屏.一种基于构建基因库求解TSP问题的遗传算法[J].计算机学报,2003,26(12):1753-1758. 被引量:40
  • 6Schnier T.,Yao X..Using multiple representations in evolutionary algorithms.In:Proceedings of the IEEE Congress on Evolutionary Computation,San Diego,2000,479~486
  • 7Zhao Xin-Chao,Long Hong-Liang.Multiple bit encodingbased search algorithms.In:Proceedings of the IEEE Congress on Evolutionary Computation,Edinburgh,UK,2005,1996~2001
  • 8Michalewicz Z..Genetic algorithms+ data structures = evolution programs(3rd Edition).Springer,1996
  • 9Yao X.,Liu Y.,Lin G.M..Evolutionary programming made faster.IEEE Transactions on Evolutionary Computation,1999,3(2):82~102
  • 10Lee C.Y.,Yao X..Evolutionary programming using mutations based on the Levy probability distribution.IEEE Transactions on Evolutionary Computation,2004,8(1):1~13

二级参考文献20

  • 1[1]Baraglia R J I, Hidalgo R Perego. A hybrid heuristic for the traveling salesman problem. IEEE Transactions on Evolutionary Computation,2001,5 (6) : 613~622
  • 2[3]Guo T, Michalewicz Z. Inver-over operator for the TSP. In:Proceedings of the 5th Parallel Problem Solving form Nature,1998,803~812
  • 3[4]Michalewicz Z. Genetic Algorithm+ Data Structures = Evolution Programs. 3rd ed. Berlin: Springer-Verlag, 1996
  • 4[5]Merz P,Freisleben B. Genetic local search for the TSP: New results. In: Proceedings of the 1997 IEEE International Conference on Evolutionary Computation, 1997. 259~ 164
  • 5[6]Merz P, Freisleben B. Memetic algorithms for the traveling salesman problem. Complex System, 2001,13(4):297~345
  • 6[7]Volgenant T, Jonker R. The symmetric traveling salesman problem and edge exchanges i minima l-trees. European Journal of Operational Research, 1983,12: 394~403
  • 7[8]Carpaneto G, Fichetti M, Toth P. New lower bounds for the symmetric traveling salesman problem. Mathmatics Programming, 1989,45: 233~254
  • 8[10]Johnson D S. Local optimization and the traveling salesman problem. In: Proceedings of the 17th International Colloquium on Automata,Language and Programming,1990. 446~461
  • 9Leung Y.W., Wang Y.. An orthogonal genetic algorithm with quantization for global numerical optimization. IEEE Transactions on Evolutionary Computation, 2001, 5(1): 41~53
  • 10Kazarlis S.A.,Papadakis S.E.,Theocharis J.B.,Petridis V..Microgenetic algorithms as generalized hill-climbing operators for GA optimization. IEEE Transactions on Evolutionary Computation, 2001, 5(3): 204~217

共引文献96

同被引文献60

  • 1李迎春,郝志峰,王宁宁.系统可靠性的多目标优化计算[J].华南理工大学学报(自然科学版),2004,32(12):80-82. 被引量:3
  • 2付国江,王少梅,刘舒燕,李宁.含维变异算子的粒子群算法[J].武汉大学学报(工学版),2005,38(4):79-83. 被引量:20
  • 3郑小霞,钱锋.一种改进的微粒群优化算法[J].计算机工程,2006,32(15):25-27. 被引量:23
  • 4叶彬,张鹏翔,赵波,曹一家.多目标混合进化算法及其在经济调度中的应用[J].电力系统及其自动化学报,2007,19(2):66-72. 被引量:9
  • 5刘波,王凌,金以慧.差分进化算法研究进展[J].控制与决策,2007,22(7):721-729. 被引量:291
  • 6Michalewicz Z. Genetic algorithm + data structure - evolutionary programs [M]. 3rd rev and extended ed. Berlin: Springer-Verlag, 1996.
  • 7Holland J H. Adaptation in natural and artificial systems [ M ]. Michigan : University of Michigan Press, 1975.
  • 8Han K H, Kim J H. Genetic quantum algorithm and its application to combinatorial optimization problem [ C ]// Proceedings of IEEE Congress on Evolutionary Computation. San Diego : IEEE ,2000 : 1 354-1 360.
  • 9Han K H, Park K H, Lee C H, et al. Quantum-inspired evolutionary algorithm for a class of combinatorial optimization [ J ]. IEEE Transaction on Evolutionary Computation, 2002,6 ( 6 ) : 580- 593.
  • 10Meshoul S, Mahdi K, Batouche M. A quantum inspired evolutioary framework for multi-objective optimization [ C ]// Covilh A. Proceedings of the 12th Portuguese Conference on Artificial Intelligence. Portugal :Springer,2005 : 190-121.

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部