期刊文献+

烷氧基取代聚对苯乙炔三阶非线性光学性能 被引量:1

Third-order Optical Nonlinearities of Poly(p-phenylene vinylene)Derivatives with Alkoxyl Substituents
下载PDF
导出
摘要 通过双醚化反应、氯甲基化反应以及在强碱性条件下进行的脱氯化氢反应制备聚(2-甲氧基-5-丁氧基)对苯乙炔(PMOBOPV)、聚(2-甲氧基-5-己氧基)对苯乙炔(PMOHOPV)、聚(2,5-二丁氧基)对苯乙炔(PDBOPV)和聚(2,5-二己氧基)对苯乙炔(PDHOPV)等四种可溶性聚对苯乙炔(PPV)衍生物,通过紫外-可见吸收光谱对产物分子结构进行表征.结果显示,PMOBOPV、PMOHOPV、PDBOPV和PDHOPV的共轭π电子发生π→π*跃迁的吸收峰分别位于491nm、495nm、504nm和510nm处,相应的光学禁带宽度分别为2.23eV、2.18eV、2.12eV和2.07eV.利用简并四波混频技术测量PPV衍生物的三阶非线性光学性能,探讨了分子结构对PPV衍生物三阶非线性极化率(χ(3))的影响.研究发现,激发波长为532nm时,PMOBOPV、PMOHOPV、PDBOPV和PDHOPV的共振χ(3)值分别为3.45×10-10、5.13×10-10、7.15×10-10和9.61×10-10esu;激发波长为1064nm时,它们的非共振χ(3)值分别为1.09×10-11、1.42×10-11、1.62×10-11和2.14×10-11esu. Poly (p-phenylene vinylene) (PPV) derivatives with symmetrical and asymmetrical alkoxyl substitutes including poly (2-methoxy-5-butoxy)-p-phenylene vinylene (PMOBOPV),poly (2-methoxy- 5- hexyloxy)-p-phenylene vinylene (PMOHOPV), poly (2,5-dibutoxy) -p-phenylene vinylene (PDBOPV) and poly (2,5-dihexyloxy)-p-phenylene vinylene (PDHOPV) were prepared through bisetherification, chloromethylation and dehydrochlorination reaction and characterized by UV-Visible absorption spectrum. The results revealed that the conjugated absorption peak of PMOBOPV, PMOHOPV, PDBOPV and PDHOPV assigned to π→π transition of π electrons were located at 491 nm,495 nm,504 nm and 510 nm and the optical bandgaps were also measured to be around 2. 23 eV, 2. 18 eV, 2. 12 eV and 2. 07 eV respectively. The third-order nonlinear optical susceptibilities (χ^(3)) of PPV derivatives were studied by degenerate four-wave mixing technique and the effects of molecular structure on third-order optical nonlinearities of PPV derivatives were also investigated. The experimental results showed that the resonant χ^(3) values at 532 nm of PMOBOPV, PMOHOPV, PDBOPV and PDHOPV were 3. 45×10^-10 , 5. 13×10^-10,7. 15×10^-10 and 9.61×10^-10 esu,and the corresponding off-resonate χ^(3) values at 1064 nm were 1. 09×10^-11,1.42×10^-11. 62×10^-11 and 2.14×10^-11 esurespectively.
出处 《光子学报》 EI CAS CSCD 北大核心 2006年第10期1522-1525,共4页 Acta Photonica Sinica
基金 国家自然科学基金(批准号:60277002)资助
关键词 非线性光学 简并四渡混频 聚对苯乙炔衍生物 三阶非线性极化率 Nonlinear optics Degenerate four-wave mixing Poly (p-phenylene vinylene) derivatives Third-order nonlinear optical susceptibility
  • 相关文献

参考文献5

二级参考文献56

  • 1Adler E. Nonlinear optical frequency polarization in a dielectric. Phys Rev,1964,134(3A) :728 -733.
  • 2Hoshi H, Nakamura N, Maruyama Y, et al. Optical second-and third-harmonic generation in C60 film. Jpn J Appl Phys,1991,30(8A) : L1397 - L1398.
  • 3Wang X K, Zhang T G, Lin W P, et al. Large second-harmonic responsability of C60 thin films. Appl Phys Lett,1992,60:810.
  • 4Kumagai K, Mizutani G,Tsukioka H,et al. Second-harmonic generation in thin films of copper phthalocyanine. Phys Rev(B), 1993,48(19) : 14488 - 14495.
  • 5Qin S J, You W M, Su Z B. Second-harmonic generation from the quadrupole response in C60 films. Phys Rev (B),1993,48 (23) : 17562 - 17568.
  • 6Wilk D, Johannsmann D, Stanners C, et al. Second-harmonic generation from C60 thin films at 1. 064 μm. Phys Rev(B),1995, 51 ( 15 ) : 10057 - 10067.
  • 7Koopmans B, Janner A M, Jonkman H T,et al. Strong bulk magnetic dipole induced second-harmonic generation fromthe C6o. Phys Rev Lett, 1993,71 (21) :3569 - 3572.
  • 8Yamada T, Hoshi H, Ishikawa K, et al. Origin of second-harmonic generation in vacuum-evaporated copper phthalocyanine film. Jpn J Appl Phys, 1995,34 ( 3A ) : L299- L302.
  • 9Yamada T, Hoshi H, Manaka Ishikawa T, et al. Resonant enhancement of second-harmonic generation of electric quadrupole origin in phthalocyanine films. Phys Rev (B),1996,53(20) : R13314 - R13317.
  • 10Hoshi H, Yamada T, Ishikawa K, et al. Second-harmonic generation in centrosymmetric molecular films: analysis under anisotropic conditions. Phys Rev ( B ), 1995, 52(16) : 12355 - 12365.

共引文献17

同被引文献14

  • 1李宝铭,吴洪才,刘效增,高潮,孙建平.离子注入改性聚对苯乙炔的光学及电学性能[J].高分子材料科学与工程,2005,21(5):114-117. 被引量:3
  • 2Shim H K, Yoon C B, Lee J I, et al. [J]. Polymer Bulletin, 1995, 34 (2): 161-167.
  • 3Bader M A, Keller H M, Marowsky G.[J]. Optical Materials, 1998, 9: 334-341.
  • 4Burroughes J H, Bradley D D, Brown A R, et al. [J]. Nature, 1990, 347: 539-541.
  • 5Friend R H, Gymer R W, Holmes A B, et al. [J]. Nature, 1999, 397 (6715): 121-128.
  • 6Ikeyama M, Hayakawa Y, Tazawa M, et al. [J]. Thin Solid Films, 1996, 281-282: 529-532.
  • 7Ramakrishna Murthy M, Venkateshwar Rao E. [J]. Bulletin of Materials Science, 2002, 25 (5): 403-406.
  • 8Wan Hong, Hyung-Joo Woo, Han-Woo Choi, et al. [J]. Applied Surface Science, 2001, 169-170: 428-432.
  • 9Das A, Dhara S, Patnaik A. [J]. Nuclear Instruments & Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 1999, 149 (1-2): 53-60.
  • 10David M E Dan F, Amnon Y. [J]. Applied Physics Letters, 1978, 33 (1): 41-44.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部