期刊文献+

基于自适应最优核时频分布理论的间谐波分析新方法 被引量:26

A Novel Approach to Interharmonics Analysis Based on Adaptive Optimal Kernel Time-frequency Distribution
下载PDF
导出
摘要 间谐波是非整数倍基波频率的谐波信号,对电网的危害日益严重,因此,准确地分析间谐波的特征对电力系统具有十分重要的意义。提出一种基于自适应最优核时频分布理论的间谐波分析新方法。自适应最优核时频分布理论是一种现代信号处理方法,它是采用非线性变换处理非平稳信号的时频分析方法。文章首先对信号求取模糊函数,并在模糊域采用自适应最优高斯核函数来抑制交叉项,然后求模糊函数的二维傅里叶变换,从而得到仅有自项分量的时频分布。该法用于多分量、时变的含有间谐波的信号分析,具有很好的时频聚集性,强自适应性和抗噪声性能,且不受交叉项的影响,时间–带宽积几乎可以达到Heisen-berg不确定性原理给出的下界。仿真结果表明了该方法的有效性。 Interharmonics is a kind of harmonics signal which is not an integer of the fundamental frequency component. It is harmful to power system, so it is important to analyze interharmonics accurately. A novel approach to interharmonics analysis based on adaptive optimal kernel time-frequency representation (AOK TFR) is presented. AOK TFR is a time-frequency analysis theory that can analyze unstabilized signal by nonlinear transformation on modern signal processing. Adaptive optimal Gauss kernel is applied to restrain cross-components in ambiguity domain and then two dimensions FFF is done. Thus auto-components' timefrequency distribution is obtained. A kind of signal is analyzed with this method, which is multi-component, time-varied and interharmonics contained. Better time-frequency resolution, adaptiveness and anti-noise abilities are represented and this method is independent on multi-components. Its time- bandwidth product almost can meet lower limit of Heisen-berg theory. Its validity has been shown by simulation results.
出处 《中国电机工程学报》 EI CSCD 北大核心 2006年第18期84-89,共6页 Proceedings of the CSEE
关键词 自适应最优核 时频分布 间谐波 自项 交叉项 adaptive optimal kernel time-frequency distribution interharrnonics auto-components crosscomponents
  • 相关文献

参考文献19

二级参考文献113

  • 1李红,杨善水.傅立叶电力系统谐波检测方法综述[J].现代电力,2004,21(4):39-44. 被引量:21
  • 2戴先中,唐统一.周期信号谐波分析的一种新方法[J].仪器仪表学报,1989,10(3):248-255. 被引量:205
  • 3崔锦泰 程正兴(译).小波分析导论[M].西安:西安交通大学出版社,1995..
  • 4林海雪.国际电工委员会谐波标准简介[J].中国电力,1998,10.
  • 5[5]Lobo T,Leonowicz Z,Rezmer J,Koglin H-J.Advanced signal processing method of harmonics and interharmonics estimation.IEE 2001,Developments in Power System Protection,315~318
  • 6[6]Jain Vijay K,Collins Willim L.High-accuracy analog measurements via interpolated FFT.IEEE Trans.IM,1979,128∶113~122
  • 7[7]Grandke Tomas.Interpolation algorithms for discrete fourier transform of weighed signals.IEEE Trans.IM,1983,132∶350~355
  • 8[1]Mitra Sanjit K.Digital signal processing-a computer-based approach.McGraw Hill Companies inc,2001
  • 9[2]Chu R F and Burns J J.Impact of cycloconverter harmonics.IEEE Trans.IA,1989,123∶427~435
  • 10[3]Li Chun,Xu Wilson.On the ambiguity of defining and measuring inter-harmonic.IEEE Power Engineering Review,July 2001∶56~57

共引文献600

同被引文献269

引证文献26

二级引证文献175

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部