摘要
利用等价方程组,Jordan标准型与常数变易公式,研究了一类n阶常系数非齐线性常微分方程P(D)y=a(x)coseλx+b(x)sineμx,得到了它的一种新的求解方法.最后给出了一个详细的实例.
In this paper, the nth order nonhomogeneous linear ordinary differential equations with constant coefficints P(D)y=a(x)cose^λx+b(x)sine^μx , Where P(D) = D^n +a1D^n-1 +...+an-1D+an is differential polynomial operator, a1, a2,..., an, A and μ are arbitrary constants, a(x) and b(x) are continuous functions and it is investigated by using equivalent system, Jordan canonical form and variation of constants formula. A new method of finding its solution is obtained. Finally, an illustrative example is presented in detail.
出处
《湖南城市学院学报(自然科学版)》
CAS
2006年第3期34-36,共3页
Journal of Hunan City University:Natural Science
关键词
非齐线性常微分方程
等价方程组
基解矩阵
标准型
常数变易公式
Nonhomogeneous linear ordinary differential equation
equivalent system
fundamental solution matrix
Jordan canonical form
variation of constants formula