摘要
已知函数在开区间内一致连续,可证得在处有有限极限(指单侧极限存在)。因此,如果将极限值分别作为在处的值,则可以被延拓到闭区间,且在上一致连续。同样,把连续及一致连续的概念推广到一般的集合上,也有类似的结论。
If f (x) is uniformly continuous function in the open interval (a, b), the existence of limit of [ a, b ], and will be uniformly continuous in [ a, b ]. Similarly, if the concepts of continuity and uniform continuity were extended to a general set E belong to R , the same conclusion could be drawn.
出处
《大庆师范学院学报》
2006年第5期8-9,共2页
Journal of Daqing Normal University