期刊文献+

三五阶非线性光纤中光脉冲的啁啾和频谱 被引量:9

Frequency chirps and spectra of optical pulses propagating in optical fibers with cubic-quintic nonlinearity
下载PDF
导出
摘要 为了探讨光纤的五阶非线性对光脉冲传输的影响,利用同时考虑三阶和五阶非线性效应的非线性薛定谔方程,在忽略光纤色散的情况下,解析并计算研究了超高斯光脉冲的非线性相移、频率啁啾。数值模拟了光脉冲传输的功率频谱。结果表明,与只有三阶非线性折射率的情形相比,正五阶非线性折射率的存在使光脉冲在光纤中传输的非线性相移和最大频率啁啾增大,使无啁啾光脉冲的频谱宽度变宽,谱峰数目增多,高斯脉冲初始啁啾对频谱的影响与三阶非线性折射率的情形类似;负五阶非线性折射率则使光脉冲传输的非线性相移和频率啁啾呈现新的特点,并使无啁啾光脉冲的频谱宽度变窄,谱峰数目减少。 The aim of the paper is to study the effect of the quintic nonlinearity of an optical fiber on the propagation of optical pulses. Utilizing the cubic-quintic nonlinear Schroedinger equation in which the dispersion of optical fibers is neglected, the nonlinear phase shifts and frequency chirps of super-Gaussian optical pulses are calculated and investigated analytically. The power spectra of optical pulses are numerically simulated as well. The resnlts show that the positive quintic nonlinear refractive index makes the nonlinear phase shifts and the maximum frequency chirps of optical pulses larger,the spectral width of unchirped optical pulses wider and the number of spectral peaks more than those of cubic nonlinear refractive index. The influence of initial chirps of Gaussian optical pulses on the spectra is similar to that of cubic nonlinear refractive index. In case of the negative quintic nonlinear refractive index, the nonlinear phase shifts and frequency chirps take on new characteristics. The negative quintic nonlinear refractive index also makes the width of unchirped optical pulses narrower and the number of spectral peaks less.
出处 《激光技术》 CAS CSCD 北大核心 2006年第5期479-482,共4页 Laser Technology
基金 四川省科技厅应用基础基金资助项目(05JY029-084)
关键词 非线性光学 三五阶非线性 频率啁啾 功率频谱 nonlinear optics eubic-quintic nonlinearity frequency chirps power spectra
  • 相关文献

参考文献3

二级参考文献26

  • 1钟先琼,李大义,陈建国.交叉相位调制不稳定性的进一步分析[J].激光技术,2004,28(4):427-430. 被引量:6
  • 2A. Hasegawa. Generation of a train of soliton of pulses by induced modulafional instability in optical fibers [J]. Opt.Lett. , 1984, 9(7):288-290.
  • 3E. M. Dianov, P. V. Mamyshey, A. M. Prokhorov et al..Generation of a train of fundamental solitons at a high repetition rate in optical fibers [J]. Opt. Lett., 1989, 14(18):1008-1010.
  • 4Xu Wangcheng. Wen Shuangchun, Liu Songhao et al.. Modulation instability of optical pulses in long optical fibers with minimum group-velocity dispersion [J]. Chin. Phys.Lett., 1997, 14(6):470-473.
  • 5K, Tajima, Compensation of soliton broadening in nonlinear optical fibers with loss [J]. Opt. Lett. , 1987,12(1):54-56.
  • 6T. A. Davydova, Y. A. Zaliznyak. Schrodinger ordinary solitons and chirped solitons: fourth-order dispersive effects and cubic-quintic nonlinearity [J]. Physica D, 2001, 156:260-282.
  • 7D. Artigas, L. Torner, J. P. Torres et al.. Asymmetrical splitting of higher-order optical solitons induced by quintic nonlinearity [J]. Opt. Commun. , 1997, 143:322-328.
  • 8D. Pushkarov, S. Tanev. Bright and dark solitary wave propagation and bistability in the anomalous dispersion region of optical waveguides with third- and fifth-order nonlinearities [J].Opt. Commun., 1996, 124:354-364.
  • 9ACRAWAL C P. Nonlinvar fiber optics [M]. 2nd ed, New York: Academic Press,1995.133 - 141.
  • 10SYLVESTRE T,COEN S, EMPLIT P et al. Self-induced modulation instability laser revisited:normal dispersion and dark-pulse train generation [J]. Opt Lett,2002,27(7) :482 -484.

共引文献21

同被引文献44

引证文献9

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部