期刊文献+

基于项目约束的关联规则挖掘方法的研究 被引量:2

On the Association Rules of Mining Algorithm Containing Item Constraint
下载PDF
导出
摘要 关联规则挖掘的核心问题是算法的效率和伸缩性,这就产生了基于约束的关联规则挖掘方法。关联规则挖掘中除了支持度和信任度外的约束外,最基本的是项目约束。本文总结和归纳了含有项目约束的关联规则挖掘的分类,并在算法Apriori的基础上,介绍了基于项目约束的关联规则的挖掘算法D irect。 The core of association rules mining is the problem of efficiency and scalability, this leads to the mining method of association rules containing item constraint. Besides the constraint of support and confidence, the essential constraint is item constraint. This paper concludes the classification of association rules containing constraint, and introduces the Apriori——an approach mining association rules based on item constraint.
作者 邱长春
出处 《湖北教育学院学报》 2006年第8期21-23,共3页 Journal of Hubei Institute of Education
关键词 数据挖掘 关联规则 项目约束 DIRECT data mining Association Rules Item Constrains Direct
  • 相关文献

参考文献1

二级参考文献5

  • 1V Estivill-Castro,I Lee.Autoclust+:Automatic clustering of point-data sets in the presence of obstacles[C].In:International Workshop on Temporal and Spatial and Spatio-Temporal Data Mining(TSDM2000), 2000.
  • 2C-H Lee,O R Zayane.Polygon reduction:An algorithm for minimum line representation for polygons[C].In:Submitted to 14th Canadian Conf on Computational Geometry, 2002.
  • 3M Stone.A mnemonic for areas of polygons[J].AMER MATH MONTHLY, 1986; 93:479-480.
  • 4A K H Tung,J Hou ,J Han.Spatial clustering in the presence of obstacles[C].In:Proc 2001 Int Conf On Data Engineering(ICDE'01),2001.
  • 5A K H Tung,R T Ng,L V S Lakshmanan et al.Constraint-based clustering in large databases[C].In : ICDT, 2001 : 405-419.

共引文献3

同被引文献20

  • 1唐瑜,王勇,杨辉华.挖掘最大频繁项集的优化方法[J].计算机工程与应用,2006,42(31):171-173. 被引量:5
  • 2李芸,李青山.基于约束的最大频繁项集挖掘算法[J].计算机工程与应用,2007,43(17):160-163. 被引量:12
  • 3AGRAWAL R, IMIELINSKI T, SWAMI A. Mining association rules between sets of items in large databases: Proceedings of the ACM SIGMOD Conference on Management of data, Washington, D. C. , May 26 - 28, 1993 [ C~. Washington, D. C : ACM Press, 1993.
  • 4AGRAWAL R, SRIKANT R. Fast algorithms for mining association rules in large databases: Proceedings of 20th International Conference on Very Large Data Bases, Santiago de Chile, September 12 -15, 1994[ C]. San Fransisco: Morgan Kaufmann Publishers, 1994.
  • 5HAN J, PEI J, MAO R. Mining frequent patterns without candidate generation: Proceedings of the ACM SIGMOD Conference on Management of Data, Dallas.May 16 - 18, 2000[ CI. New York: ACM Press,2000.
  • 6HAN J, KAMBER M. Data Mining:Concepts and Techniques[ M]. Beijing:Higher Education Press,2001.
  • 7David Aha.UCI Machine learning repository:Center for ma-chine learning and intelligent systems[DB].http://ar-chive.ics.uci.edu/ml/datasets.html,2010.
  • 8冯凤.快速更新挖掘最大频繁项集[J].合肥学院学报(自然科学版),2007,17(4):46-49. 被引量:3
  • 9王华,胡学钢,田卫东.特定数据最大频繁集挖掘算法[J].计算机工程,2008,34(14):63-65. 被引量:3
  • 10朱烨,叶高英.关联规则挖掘Apriori算法的改进[J].现代电子技术,2008,31(18):78-80. 被引量:8

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部