期刊文献+

快速训练支持向量机的并行结构 被引量:1

Fast Training Support Vector Machines Using Parallel Architecture
下载PDF
导出
摘要 序列最小优化(SMO)是一种常见的训练支持向量机(SVM)的算法,但在求解大规模问题时,它需要耗费大量的计算时间。文章提供SMO的一种并行实现方法。并行SMO是利用信息传递接口(MPI)开发的。首先将整个训练数据集分为多个小的子集,然后同时运行多个CPU处理器处理每一个分离的数据集。实验结果表明,当采用多处理器时,在Adult数据集上并行SMO有较大的加速比。 Sequential minimal optimization (SMO) is one popular algorithm for training support vector machine (SVM), but it still requires a large amount of computation time for solving large size problems. This paper proposes one parallel implementation of SMO for training SVM. The parallel SMO is developed using message passing interface(MPI). Specifically, the parallel SMO first partitions the entire training data set into smaller subsets and then simultaneously runs multiple CPU processors to deal with each of the partitioned data sets. Experiments show that there is greater speedup on the adult data set data set when many processors are used.
出处 《微电子学与计算机》 CSCD 北大核心 2006年第10期96-99,103,共5页 Microelectronics & Computer
基金 国家自然科学基金项目(70501008) 上海市浦江人才计划项目
关键词 支持向量机 序列最小优化方法 信息传递接口 并行算法 Support vector machine(SVM), Sequential minimal optimization(SMO), Message passing interface (MPI), Parallel algorithm
  • 相关文献

参考文献5

  • 1V N Vapnik.The nature of statistical learning theory,New York,Springer-Verlag,1995
  • 2J C Platt.Fast training of support vector machines using sequential minimal optimisation.In Advances in Kernel Methods-Support Vector Learning,MIT Press,1999:185~208
  • 3S S Keerthi,S K Shevade,C Bhattsacharyya,et al.Improvements to Platt's SMO algorithm for SVM classifier design.Neural Computation,2001,13:637~649
  • 4C C Chang,C J Lin.LIBSVM:a library for support vector machines,http://www.csie.ntu.edu.tw/~cjlin/libsvm/
  • 5P S Pacheco.Parallel programming with MPI.San Francisco,Morgan Kaufmann Publishers,1997

同被引文献15

  • 1Krepki R, Blankertz B, Curio G, et al. The Berlin Brain-Computer Interface (BBCI)-Towards a New Communication Channel for Online Control in Gaming Applications[J]. Multimedia Tools and Applications, 2007,33 : 73-90.
  • 2Karmali F, Polak M, Kostov A. Environmental Control by a Brain-Computer Interface[Z].
  • 3Farwell L A,Donehin E. Talking off the Top of Your Head: Toward a Mental Prosthesis Utilizing Event-Related Brain Potentials[J]. Eleetroencephalography and Clinical Neurophysiology, 1988,70 : 510-523.
  • 4Wolpaw J R, Birbaumer N, Heetderks W J, et al. Brain-Computer Interface Technology: A Review of the First International Meeting[J]. IEEE Trans on Rehabilitation Engineering,2000,8:164 173.
  • 5http://www. neuroscan. com.
  • 6Krusienski D J, Schalk G. Wadsworth BCI Dataset (P300 Evoked Potentials)[Z]. BCI Competition Ⅲ Challenge, 2004.
  • 7Kotchoubey K A, Kaiser B,Wolpaw J, et al. Brain-Computer Communication: Unlocking the Locked in [J]. Psychological Bulletin, 2001,127 : 358-375.
  • 8Vaughan T M, Wolpaw J R. The Third International Meeting on Brain-Computer Interface Technology: Making a Difference[J]. IEEE Trans on Neural Systems and Rehabilitation Engineering: A Publication of the IEEE Engineering in Medicine and Biology Society, 2006,14:126.
  • 9Guan C, Thulasidas M,Wu J. High Performance P300 Speller for Brain-Computer Interface. 2004.
  • 10Wang C, Guan C, Zhang H. P300 Brain-Computer Interface Design for Communication and Control Applications[Z]. 2005.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部